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    -  A P P E N D I X          A  -               
WA V E G U I D E  E X A M P L E

14.1  Example of  Waveguide Calculat ion
In the section 6.5 we showed how we could use waveguide approaches in the

relatively simple spherical coordinate system (compared to OS for example) to
approximate the sound transmission through an arbitrary waveguide. In order to
make this example as lucid as possible we will consider only a single section.
Extending the techniques to multiple sections will be readily apparent once we
have shown the techniques as they are applied to a single section. 

The problem that we will evaluate is one that is both simple and physically
realizable.  Figure 6-14a shows a drawing of this example. A four inch midrange

dome with a resonance of 1000 Hz. and a Q of 1.0 is placed at the apex of a
spherical horn of 45° - a total 90° encompassed angle.  The dome is driven axially
so that the input velocity is expressed simply as

(14.1.1)
owing to the fact that the velocity is not normal to the surface of the dome for
points away from its axis. The radius of the dome is assumed to match the radius
at the throat of this waveguide, which is then the radius to the throat of the
waveguide - 7 cm. The radius to the mouth is chosen to be 33 cm. (about 1 ft.)
creating an aperture size of just under 50 cm. in diameter. The enclosure is
assumed to be a sphere because of the simplicity of calculating the radiation and
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impedance functions. A flat baffle could also be used but would require a few
more calculations which would not add anything to the discussion.

The first thing that we  must do is to calculate the Eigenvalues  and Eigen-
functions for a 45° waveguide. By using the shooting method (as described on pg.
138), values for the separation constants λ can be found. After performing this
task for several values of angles a pattern began to emerge and the Eigenvalues
were found to be predictable from the equation

(14.1.2)

n = 0,2,4…mode number
Only odd values of the mode number are required due to the assumption of axi-
symmetry. These values of λ can be seen to be reasonable even though no proof
of their validity is evident.

From Eq.(14.1.2) we will then find that,

(14.1.3)

which are the eigenvalues for the standard Legendre Eq. 3.4.34. With the eigen-
values in hand we can easily generate the angular function using the series solu-
tion1 

(14.1.4)
This series converges very rapidly in the region that we are interested in, i.e. small 
(1-x). 

Fig.14-1 shows the first five angular modes, although, as we will see, we will
only need to use the first three terms for the current problem. Therefor in our
problem m=4, and n=0,2,4. The zero order Eigen-function is unity, which is
identical to the normal Legendre function indicating that the zeroth order mode
is the same regardless of the angle of the waveguide. This means that if we are
only concerned with low frequencies we need only consider this first mode.  This
is exactly the situation we refered to on pg.131 when we talked about the limited
applicability of Websters Equation.

The next step is to calculate the radial functions. This appear, at first, not to be
too difficult since we know the eigenvalues.  The problems come from stability of

1.  See Zhang, Computations of Special Functions
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the calculations. By using the well know series solution for Bessel’s equation (of
arbitray order) we can calculate the radial functions for any value of m and n.

Fig.14-1 shows the lowest order radial function as real and imaginary parts
along with the derivatives of these functions.  All four of these functions will be
required for an analysis. The real part of the radial function of the first kind is
easy to calculate and converges very rapidly.  It also has a well know value at high
kr which is the same as the normal spherical Hankel functions (see Eq. 3.4.33 on
pg. 50).   The series solution goes unstable at high kr but can be augmented by
resorting to the solutions for large arguments allowing the functions to be evalu-
ated anywhere. This melding of solutions will raise its ugly head later in this analy-
sis.

Fig.14-3 and Fig.14-4 show the functions for n =2 and 4 respectively. Of note
in these figures is the obvious “cut-in” phenomena at about kr =5 for the n =2
mode and kr =10 for the n =4 mode.

Looking back now to pg.149 we should point out a few things. First the
modes in Eq.(6.5.13) are uncoupled. By this we mean that we can calculate each
mode propagation through the waveguide section independent of the other
modes, they do not interact. Of course there is always modal interaction and
transfer from lower modes to higher modes at each junction of the sections when
multiple sections are used (as we discussed in Sec.6.5), but since we will be dealing
with only one section in this example we need not be concerned with modal
transfer at the interfaces.

Consider then the T-matrix for an arbitrary mode
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Figure 14-1 -  The angular wave functions for 45°
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Figure 14-2 -  Radial wave functions for 45° waveguide of order zero.
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Figure 14-3 -  Radial wave functions for 45° waveguide of order two.
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(14.1.5)

multiplying this matrix out results in

(14.1.6)

zo(ka) =specific acoustic impedance at the mouth of radius a
From these two equations several important relationships can be derived.  First, if
we divide the upper one by the lower one we will get an expression for the acous-
tical impedance load on the diaphragm. For brevity we will assume that this
impedance has only a negligable effect on the diaphragm motion, which is only
slightly eroneous in this case. Next, the second equation can be solved for the
velocity v0 at the mouth for a given velocity vi at the throat. It is this second func-
tion that we are most interested in. 

(14.1.7)

So=area of the mouth
Si = area of the throat = area of the driver

Figure 14-4 -  Radial wave functions for 45° waveguide of order two.
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where the H’s are given by Eq.(6.5.14) (see errata).
A plot of this function is shown in Fig.14-5. There are only two modal curves

in this figure since the n =4 mode does not come into play below 10kHz.  Also
shown in this figure as dashed lines are the transfer functions for the n =0,2
modes for a completely non-reflecting mouth.

The lowest mode is dominate up until about 7kHz at which point the second
mode cuts in and dominates the situation.  The volume velocity transfer is unity at
low frequencies, as it must be, but there is a substantial increase in the volume
velocity above about 700Hz. reaching about 13.5 dB of passband gain.  The rip-
ples in the response are related to waves reflected from the mouth and can be
reduced by a radius’d (flared) mouth treatment as we discussed in Sec.6.6.  A
flared mouth would have a velocity transfer function that lies somewhere between
the two curves, reflecting and non-reflecting, as shown by the dotted line in
Fig.14-5.

We are now in a position to calculate the actual wave propagation down the
waveguide. To do this we must first expand the throat velocity contour into the
wavefunctions for the 45° waveguide - Fig.14-1.  We do this with the following
equation,

Figure 14-5 -  Volume velocity gain resulting from the waveguide. 
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(14.1.8)

x=cos(θ)
x0=cos(θ0)

we must also calculate the normalization

(14.1.9)

Fig.14-6 shows a plot of the recontructed velocity profile from the first two
modes which shows a fairly good match.  The higher modes required for a better
fit would not propagate down the waveguide so we need not be concerned with
fitting this profile any closer than shown in the figure.

We now use Eq.(14.1.7) to find the velocities at the mouth for each mode and
then resum the modes together.  The result of this process is shown in Fig.14-7.
This is an interesting result. Below about 6 kHz. there is basically very little
change in the mouth velocity - but note that it is radial in nature even though the
source vibrated axially. Basically the axial throat velocity has been converted into a
spherical wavefront by the nature of the waveguide, because only the n=0, the
spherical mode, can propagate at these frequencies.  Starting at about 6 kHz. the
wavefront is becoming effected by the second mode.  This mode causes the wave-
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Figure 14-6 -  Fitted throat velocity solid - exact dashed
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front to be focused into the center of the mouth until at about 10 kHz this effect
completely reverses itself.  This effect results from a phase change in the second
mode, which goes from adding in phase to adding out of phase. 

We want to know how this driver waveguide combination will radiate into
space. By using the mouth velocities from Fig.14-7 we can use Eq.(6.6.21) to cal-
culate the radiation map for the device under consideration. We will asume that
the mouth is flared into the sphere to reduce diffraction at this junction.  The
response is shown in Fig.14-8. and the axial respons is shown in Fig.14-9.

Figure 14-7 -  Mouth velocities at various frequencies.
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Figure 14-8 -  Polar map for 45° waveguide on a midrange dome.
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Figure 14-9 -  Axial response of 45° waveguide on a midrange dome
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