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1.1 A Litt le  Mathematics
The study of acoustics is greatly simplified with the use of complex numbers.

The complex exponential, an exponential raised to a complex power, is a periodic
oscillatory function

(1.1.1)
where

(1.1.2)
In this example the variable t repre-

sents time and the function, as shown in
reference. It is a vector of unit amplitude,
which rotates in the complex plane at a
rate of ω radians per seconds. The value
of ω t at any point in time yields the
phase of the complex exponential at that
moment. The real part of this vector is
an oscillating function – a sine wave at
the frequency   ω/2π

There is no difference in the complex
exponential for positive i or negative i
other than the direction of rotation. For
the time variable, however, we can
choose only one or the other, but the
choice is arbitrary. In this text, the convention for the complex exponential in time
will be the negative sign. This is the physicist’s convention, which is seemingly a
different convention than that used by electronic engineers. However, since i = - j ,
they are, in fact, equivalent, although one must be careful not to read the equations
as if i and j were identical.

Any linear signal can be described as a weighted sum of complex exponentials,
each one at a different frequency and with different amplitudes. If the amplitude

i te ω−

cos( ) sin( )ize z i z= +

Real Axis

Imaginary
 Axis

Unit Circle 

ω t

e-iω t

Figure 1-1 -  The complex exponential 
at time t - rotate by ω t radians
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value is itself complex then this value can carry both the magnitude and phase
information at any given frequency. Thus, a complex function times a complex
exponential contains virtually all of the information that we need.

The complex exponential in time can also be combined with a complex expo-
nential in space. The resulting forms

  

represent waves in the positive and negative x directions respectively. The variable
k =2π /λ is the wavenumber. Here, we must retain both signs since the waves are
free to propagate in either direction.

Since virtually all of our equations will represents motions in time (static
acoustics is not our interest) it will be easier to simply drop the time exponential.
Throughout this text the time function will almost always be ignored as superflu-
ous. It may appear at times for clarity such as in the case of a time derivative
where we need to explicitly show a time dependence for the derivative to make
sense.

1.2 The Fourier Transform and Fourier Series1

In the previous section we mentioned the fact that a function of a complex
variable with a complex exponential time factor can represent nearly any signal of
interest. The Fourier Transform formalizes this representation. It is important to
distinguish between the subtle differences between the Fourier Transform, the
Fourier Series and the Fast Fourier Transform (FFT).

The FFT is more closely related to the Fourier Series than the Fourier Trans-
form. It is a computer implementation of the complex exponential Fourier Series.
The FFT is sometimes thought of as a computer implementation of the Fourier
Transform, but this is not exactly correct. Since the FFT deals only with discrete
points and sets of data, the FFT is a discrete set of numbers – a series. The FFT is
a set of discrete functions defined on a finite interval. The Fourier Series is a set
of continuous functions defined on a finite interval, and the Fourier Transform is
a continuous function defined on an infinite interval. 

The definition of the Fourier Transform is

(1.2.3)

and

(1.2.4)

1.  See Churchill, Operational Mathematics
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The Fourier Transform is a pair of equations that map functions between two
domains. The domains in the equations above are the time domain and the fre-
quency domain. The function e-iω t is called the kernel of the transform and con-
tains the variables time and frequency – the two domains of the transform. The
Fourier Transform can map between many different domains such as spatial
coordinates and wavenumber. We will see several uses for this later transform.

It should be noted that when discussing systems the Fourier Transform can
only be applied when the system is linear. There are generalizations of system the-
ory that apply to nonlinear systems, but we will postpone that discussion until
Chap.10. The system referred to here is whatever means the signal uses to travel
on its path from the input to the output. This means that in a very real sense the
Fourier Transform should not be applied to the transducer problem. We will also
discuss this limitation in Chap.12 when we talk about measurements.

A direct result of the assumption of linearity in the application of the Fourier
Transform is the complete equivalence of the time and frequency domains. This
equivalence requires that the frequency domain response completely characterizes
the transient response of the system. The two are not independent. As long as the
Fourier Transform is used as the basis of any discussion it is an absolute require-
ment that no information is obtainable in one domain that is available in the
other. These facts have wide ranging implications. So long as we use concepts
such as impedance or frequency response we have assumed that the system is lin-
ear and that the Fourier Transform (as well as the Laplace Transform) is valid.
This means, for instance, that the impulse response of a system or the systems
time response to any signal, no matter how we may look at it, can contain no
information that is not also available to us in the frequency domain. We must not
lose sight of these fundamental facts in our study. In this text, we will not discuss
transient response, etc., preferring to do the mathematics in the frequency
domain knowing full well that any time domain signals have also been completely
determined. These calculations would thus be redundant.

The Fourier Series is defined as

(1.2.5)

where

(1.2.6)

One could think of Eq.(1.2.5) and Eq.(1.2.6) as a transform pair mapping from m
space to x space with real kernels cos(mx) and sin(mx) or a complex kernel eimx. If
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f (x) is symmetric about some point and we are free to define the location of the
origin of x to be that point, then the Am’s will disappear. We will use this principle
to some advantage.

1.3 Orthogonal  Functions
A key concept in our development will be that of orthogonality. There are

many facets to this concept, such as orthogonal Eigenvectors, etc., but one of
most interest to us is the concept of orthogonal sets of functions.

A set of functions Sn is orthogonal on the interval a|b if and only if

(1.3.7)

when n= m for some r(x) in a|b.
As an example consider the functions cos(mx) 

(1.3.8)

Thus the functions cos (mx) are orthogonal on the interval x = 〈π,-π〉.
To see the usefulness of this concept consider an arbitrary function f (x)

defined in x = 〈π,-π〉. Assume that this function can be represented by a set of
functions cos (mx)

(1.3.9)

How do we now find the values for the coefficients Bm? 
Multiplying both sides by cos(mx) and integrating over the interval yields

(1.3.10)

A direct result of orthogonality is that the right hand side equals 2π only when
n = m and zero otherwise. This allows us to replace n by m resulting in the defini-
tion of the Bm’s

(1.3.11)

as in Eq.(1.2.6). The Fourier Series is but one orthogonal expansion. We will see
many others.

An orthogonal set of functions is called orthonormal if Eq.(1.3.8) has the value
of one. All of the orthogonal sets of functions described in this text are complete,
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which means that any function defined in the interval can be represented by a
series of these functions, at any point, to any level of accuracy. This statement is
made without proof.

It is also interesting to note that if we require that the series represents the
expanded function in a least squares sense at m points, then it takes exactly m +1
terms in the series to do that. This too is stated without proof. The FFT is a least
squares approximation of the Fourier Transform at n points were n is the order of
the FFT.

Orthogonality is a powerful tool that we shall often call upon in our studies.

1.4 Orthogonal  Coordinate Systems2

The concepts of orthogonal coordinate systems have some intuitively obvious
characteristics, but they also have some not so intuitive aspects. We will utilize
many aspects of the orthogonal coordinate systems in future chapters, but a
review of the background to this theory is appropriate here.

There are an infinite number of orthogonal coordinate systems; the only
requirement being that each of the three coordinates (for three dimensional
space) must be perpendicular to the other two at every point in space. Rectangular
Coordinates obviously fit this requirement. If we further restrict ourselves to only
those coordinate systems for which the Wave Equation is separable – they can be
factored into three separate equations in the three dimensions – then we find that
there are only eleven. Why are we so concerned with separable solutions?
Because, if the Wave Equation is not separable, then there cannot be exact analyt-
ical solutions in terms of functions of a single spatial variable. As such there also
cannot be solutions for which there is an orthogonal set in which to expand our
solutions. Many of the more powerful techniques discussed in this book will
depend on there being such a reasonably simple analytical solution.

Of these eleven coordinate systems, an even fewer number will be of much
use to us here. The reason for this is simple. At very large distances from any
finite source the wavefronts must be spherical or planar and there are only six
Coordinates that meet these criteria. These are the Rectangular, Cylindrical,
Spherical, Elliptic Cylinder, Oblate Spheroidal, Prolate Spheroidal and Ellipsoidal.
It would appear that the two Cylindrical coordinate systems would not evolve into
spherical waves at large distances, but we will see that they do, in fact, do so for
finite sources. 

Probably the most interesting for us would be the Ellipsoidal, since the other
six coordinate systems are subsets of this single more general system. Unfortu-
nately, there are no know solutions in this coordinate system which have the sim-
plicity that we seek. Indeed, any solution that was general enough to include all
other solutions would be very powerful. It is further interesting to note that the
equations for all three dimensions of the Ellipsoidal Coordinates are the same,

2.  See Morse and Feshbach, Methods of Theoretical Physics
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but each has different boundary conditions and eigenvalues. If we had such a
solution available to us, we would have an extraordinarily powerful capability in
out hands. Alas, we have never found such a solution, although we have looked.
For this reason, we will have to ignore the Ellipsoidal Coordinates for the present.
We will however use all of the other five.

There are three basic Cylindrical coordinate systems that make up the five of
interest. They all have the same z coordinate but differ in the two-dimensional
representations that are orthogonal to the z coordinate. The two-dimensional rep-
resentations are the Rectangular, which is very familiar to us; the polar, which is
also familiar to us; and the Elliptical, which tends not to be so familiar. Fig.1-2
shows the two-dimensional Elliptical coordinate system. Note that the origin of
this coordinate system is not a point as we are used to thinking of it, but in this
plane it is a short line segment of length 2d. Extending this system into and out of
the plane as shown generates the Elliptic Cylinder Coordinates, which have an
origin that is a strip of width 2d. Rotating this figure about the x-axis will generate
the Oblate Spheroidal Coordinates with an origin that is a disk of radius d. Finally,
the Prolate Spheroidal Coordinates are generated by rotating the figure about the
y-axis, which has an origin that is a short line segment of length 2d. Understand-
ing the coordinate system shown in reference is fundamental to much of what we
will discuss in latter chapters. Note that if we let d =0, the above coordinate sys-
tem will degenerate into polar coordinates and likewise a value of d =∞ generates
Cartesian Coordinates.

Figure 1-2 -  Two dimensional elliptic coordinate system

d
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1.5 Electronic  Basics
The field of audio is heavily linked with the field of electronics. However,

there is really very little electronics involved with the study of transducers. The
principal exception is the design of crossovers and of secondary signal processing
techniques. Linear passive circuit theories are also used in the lumped parameter
analysis of transducers. This section will introduce some fundamental electronics
concepts as they apply to the transducer problem, but in general we would refer
the interested reader to one of the multitude of alternative texts.

A concept that is critical to the study of electronics (and to acoustics for that
matter) is that of impedance. Impedance is defined as the ratio of the complex
voltage (pressure) across a component to the complex current (volume velocity)
through it

(1.5.12)

Note that impedance is always a complex quantity and that this is a frequency
domain definition. From our previous discussions of the Fourier Transform, we
know that, working in this domain has certain implications. The first is that the
impedance concept can only be applied to a linear system. This means that dis-
cussing the impedance of a transducer is not correct since, in general, we know
that transducers are not linear devices. For small signals, however, we will find the
concept of impedance to be indispensable, although we must always keep in mind
that this concept is not valid when the signals are large enough to generate non-
linearity.

We also know that when we are using impedance concepts, there is absolutely
no difference between a discussion of the time domain or the frequency domain.
The analog of the impedance concept in the time domain is that of the impulse
response. The impulse response of a system and its impedance are completely
specified in either domain. As we stated before, they are not separate and inde-
pendent concepts.

In electrical engineering, it is common to use s = -iω = jω as the frequency
variable. This is the sign convention that will be used here, but not the letter con-
vention. Since most of this text is about acoustics, which virtually never uses the
variable s in the common literature, we will also neglect to use it. Therefore, the
equations shown here may look different from the ones an electrical engineer
would be accustomed to.

)(
)()(

ω
ωω

i
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1.6 Passive Circuits3

There are three principal components in passive electronics: the resistor, the
inductor and the capacitor. The impedance of each of these elements, as a func-
tion of frequency, is shown in Table 1. Notice that with various combinations of

these three elements virtually any magnitude impedance could be obtained by the
proper choice of the topology and the components. Also note that a choice of
magnitude values will dictate a corresponding phase function. One is not free to
choose the magnitude and phase independently for these components. This is
known as the minimum phase requirement for a passive circuit.

These three circuit elements can be combined in an infinite number of ways,
but there are a few fundamental arrangements that we should discuss. The first is
a parallel combination of all three of these components, which generates the
impedance shown in Fig.1-3. This impedance is the parallel sum of the three

3.  see Kuo, Network Analysis and Synthesis

Z(ω) Magnitude (log)) Phase (deg.))

Resistor

Inductor

Capacitor

Table 1.1: Passive components characteristics
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i Cω 0
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impedances Xl, Xr and Xc. It has a peak value is at the point where Xl = Xc, also
known as resonance. 

The equation for the curve in Fig.1-3 is simply

(1.6.13)

= the resonance frequency 

 = the quality factor”- inverse of the damping 

The roots of the denominator in Eq.(1.6.13) are called the poles of the equation
where

(1.6.14)

The values ω 1 and ω 2 are the complex poles located at
  and . 
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This equation also has a zero at ω =0. The pole-zero form is convenient for a
number of different reasons. When Q is large, this equation can be simplified into
a set of symmetric  – about the real axis – poles.

Another important combination of elements is a series LRC circuit. The
impedance of this combination is shown in Fig.1-4. In this configuration the
impedance drops to a minimum at resonance, limited only by the resistance value.
The impedance equation in pole-zero form is

(1.6.15)

where once again for large Q the equation simplifies considerably into a symmet-
ric set of zeros. It is important to note that in our work high Q values are, in gen-
eral, undesirable so we will usually have to retain the more complex form for
these equations.

Two more common passive element circuits are the low pass LR and the high
pass RC combinations. These are simply a series inductance and a series capacitor
loaded by a resistance. Fig.1-5 shows the voltage transfer function for a low pass
inductance circuit. Note that the transfer function has a value of .7 when the
impedance of the inductor equals the impedance of the resistor at a frequency
called cutoff. This filter passes frequencies below cutoff, and blocks frequencies
above cutoff with an ever greater effectiveness – at the rate of 6 dB/octave.

Finally, the high pass transfer function of a RC circuit is also shown in Fig.1-5.
As in the previous example, the half power point, cutoff, is when the impedances

0
2
0

2 2)()( ωωωωω Qiz +−=

Figure 1-4 -  Series RLC circuit impedance
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of the two elements are equal. This combination of elements rejects low frequen-
cies.

It is important to note that the curves shown in Fig.1-5 have a pure resistance
as the load of the reactive element. When this load is not a pure resistance, as is
the case for a transducer load, then things are quite different. An example of what
happens when the RC circuit has a moving coil loudspeaker load is shown in
Fig.1-6. The filters cutoff is below what we would like it to be. It is clear in this
figure that loudspeaker has a substantial affect on the transfer function, basically
moving the cutoff point well below what is predicted by a simple resistor load.

1.7 Active Circuits4

Active circuits are playing an ever increasingly important role in today’s loud-
speaker systems. They can be used to optimize the response or to dynamically
modify amplifier characteristics for better reliability or control. However, these
topics are beyond the scope of this text and we will only be discussing the most
fundamental circuits.

Basically, there are two types of active circuits of interest to us – high-pass and
low-pass. Active circuits are desirable, even necessary, for high slope crossovers

4.  see Truxal, Introductory Systems Analysis
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Figure 1-5 -   Transfer function for an RC and LR  circuit



12  -   AUD IO TR AN SD UC E RS

since the components required for these higher order filters is impractical in a
high power systems due to the large currents that the passive elements must with-
stand, preferably with very low loss. Active circuits become a better choice for fil-
ter sections above about two and sometimes even for a second order filter.

There is an extensive list of names by which specific filter shapes are known
but it is not really that useful to learn these filters by name (although it is conve-
nient to know them). Since any filter can be made up of a series combination of
first and second order sections, a far better approach than learning filter names is
to understand the pole-zero representation of a filter. In a pole-zero representa-
tion, all active filters are essentially the same, they simply have their poles and
zeros in different places and sometimes there are a different number of them. 

The simplest forms of active filters are the first order high-pass

(1.7.16)

and low-pass

. (1.7.17)

Both of these filters have a pole at ω 0, but the high-pass filter also has a zero at
ω = 0. In our study of active filters, we will look predominately at the denomina-
tors. The denominators for high and low pass sections of a given order are always
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Figure 1-6 -  High pass passive filter loaded by a complex impedance
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the same, but the numerator are different. The form of the numerator will deter-
mine if it is high pass or low pass, or even bandpass.

Fig.1-7 shows the transfer functions for both a high-pass and low-pass first
order filter with their “cutoffs”, ω 0 , at 30Hz. The final slope in the stop band for
a first order section is always ± 20 dB/decade or ± 6 dB/octave. The choice of
octaves or decades for plotting is arbitrary, but the convention in this text will be
for decades, because it is simpler to plot.

Second order filters have the form

(1.7.18)

where 〈ω²ω 0²〉 indicates the numerator for high-pass and low-pass filters
respectively. The two transfer functions are shown in Fig.1-8. The stop bands
have slopes of ± 40 dB/decade. In general, the stop band slope is always the
order of the filter times 20dB/decade.

The equation for a completely general filter function can be written as

(1.7.19)

MAn = the Moving Average coefficients 
ARm = the Auto Regressive coefficients.

All active filters are a subset of this equation.
Since a polynomial must always have roots (they may be complex) Eq.(1.7.19)

can also be written as

(1.7.20)
ω n= the roots of the numerator polynomial also known as the zeros
ω m = the roots of the denominator equation also known as the poles

Most filters, any which ultimately have stop band slopes, can be made up of a cas-
cade of second order filters, with a single first order filter required if the order is
odd. For completely arbitrary filters, some of the sections will have zeros that are
not at the origin.
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Figure 1-7 -  High and low pass filters of first order
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Figure 1-8 -  Second order high and low pass filters with Q = 1
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1.8 Newtons Equations

Nearly all of the mechanics that we will encounter will rely on Newton’s principle
(1.8.21)

a = the acceleration 
m = the mass.

This equation states that an object of mass m will accelerate based on all of the
forces acting upon it at a given moment. The acceleration will be inversely pro-
portional to the objects mass and directly proportional to the sum of the external
forces. Of importance to note here is that internal forces do not play a role in the
motion of the object, taken as a whole.

The forces that we will be concerned with will be of three basic types

1) The spring force:

 k = the spring constant
= the mechanical compliance. 

This force tends to return the object back to the place of minimum x,
usually x =0.

2) The resistive force

Rm = the mechanical damping or resistive force, 
  v = the velocity. 

This force impedes all motion and is proportional to the velocity of the
object. There are frictional or other loss type of forces which dissipate
energy (notice that a spring cannot dissipate energy) which are not of the
simple form shown in this. Viscous forces, for example, often depend on
the square of the velocity and some internal frictional forces are some-
times constant.

3) The electro-magnetic force
Bl = the magnetic flux B in which a wire of length l is 

immersed 
I = the current flow

This is the form of driving force found in most loudspeakers, although
there are many types of driving forces. Several other varieties will be
shown in Chap.2.
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In most cases, we will be interested in a simple form of mechanical system – a
simple harmonic oscillator. While real transducers do operate in regions of com-
plex mechanical motion, for the most part they only work well when the motion
is simple harmonic.

1.9 The Simple Harmonic Osci l lator5

Using the above equations, we can write the differential equation which gov-
erns a freely suspended body (like a loudspeaker cone) driven by a non-contacting
force (like a voice coil). The object sees a spring acting to return the object to its
rest position; a damping force, which we will assume acts directly on the body and
is of the internal dissipation variety; and an external force that acts directly on the
body. From Newton’s principle, we have

which leads to a differential equation of the form

(1.9.22)

F(t) = the external driving force. 
We could solve this equation using standard differential equation methods but it
will be more instructive for us to solve it in another way. 

Take a Fourier Transform of Eq.(1.9.22) and noting the operator / transform
pair which is central to the advantageous characteristics of this transform

(which states that the derivative in the time domain is analogous to a multiplica-
tion by iω in the frequency domain) results in

(1.9.23)

which can now be solved as a simple algebraic equation to get

(1.9.24)

Fig.1-9 shows a typical displacement response for this system. The displacement
function is the same as a classic low pass filter of second order (see Fig.1-7).

5.  see Mirovitch, Analytical Methods in Vibrations
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We now want to look at the objects velocity instead of its displacement. Using
-iω for differentiation in the frequency domain, i.e. V(ω) = -iω X(ω), Eq.(1.9.24)
becomes

(1.9.25)

If we think of the velocity V (ω ) as a current and the force F (ω) as a voltage
then Eq.(1.9.25) is exactly analogous to that of a series electrical circuit with an
impedance given by the denominator terms. In this analogy the mass has the anal-
ogous function of an inductor, the mechanical resistance that of an electrical
resistor and the compliance that of a capacitor. The data in Table 1 then applies to
these analogous mechanical components just as it does to the electrical ones. We
will discuss these analogs further in Chap.3.

1.10 Coupled Systems
Let us associate the force in the preceding section with the force of a voice

coil, for example, such that
(1.10.26)
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Figure 1-9 -  Mechanical displacement example
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Assume that we have a current that is independent of frequency or load – a con-
stant current source. Applying the equations in the preceding section to this case,
we would note that the mechanical object is uncoupled from the source – the two
are not dependent upon one another. If, instead of a constant current source, we
have the more common constant voltage source, then we must determine the cur-
rent through the transducer because it is no longer constant. This current can be
found by considering the voltage drops across the voice coil

(1.10.27)
ze = the electrical impedance of the voice coil 
Eemf = Bl V(ω) the back emf of the moving coil. 

Since this equation contains a term from the mechanical domain we must find an
equation for the velocity in that domain accounting for the fact that the current is
a variable. By summing the forces on the diaphragm and using Eq.(1.9.23), we get
the coupled system

(1.10.28)

zm = the mechanical impedance of the simple harmonic oscillator. 
A useful way of writing this equation is as a matrix

(1.10.29)

If there are no external forces on the object (it is in a vacuum), then F(ω)=0. If
the source is a constant voltage then the equations above simplify to 

(1.10.30)

If the force is -Bl E / Re, then this equation is identical with Eq.(1.9.25), except
that the mechanical impedance in the denominator now contains an extra term
Bl / Re,. From the form of this term it appears as dampener of the motion – elec-
tro-magnetic damping. This new term is the result of the electro-magnetic coupling
seen in the coupled equations above. In the uncoupled case of a current source,
this extra damping does not occur.

It is desirable to put the electrical quantities on one side of the matrix in
Eq.(1.10.29) and the mechanical terms on the other side. The resulting form 

(1.10.31)
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is not nearly as succinct as Eq.(1.10.29). However, we will still find it to be useful
in later chapters.

1.11 Basic  T-Matrices
From the results of the previous section, we can see that matrices offer a con-

venient way of looking at a mechanical – in fact any – system. The entire field of
Finite Element Analysis (FEA) is a concise but rigorous formulation for deter-
mining the matrix equations that best represent a complex system, given the num-
bers of degrees of freedom being allowed. For us, we shall see that a simple
formulation will give us all of the degrees of freedom that we will require.

The T-matrix (for Transfer matrix) formulation is usually discussed as a two
port system – an single input port and an single output port. It is drawn as

The subscript 1 refers to the input and subscript 2, the output. The letter D refers
to the “drop” quantity and the letter F refers to the “flow” quantity, the usual
analogy being voltage and current respectively. The quantities can also be force
and velocity or pressure and volume velocity. The black box system above can be
written as

(1.11.32)

An example has already been shown in Eq.(1.10.31).
The rules for manipulating T-matrices are quite simple. A system is built up of

elements as they appear in the physical system from the input through to the out-
put. T-matrices, which represent each of the fundamental elements, are then sub-
stituted for the schematic elements. The matrices are then simply multiplied out
to yield the equations for final system. For multiple inputs or multiple outputs, the
concepts can be generalized to any number of degrees of freedom, as in FEA. For
our purposes, most of what we will do is of the single input/single output variety.
The open issue at this point is what are the T-matrices for typical elements found
in a transducer? First, we need to discuss some fundamental rules for T-matrix
elements.
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1.12 Series  and Paral le l  Elements  in a T-matrix
We will need to know the forms for a T-matrix when elements are in either

series or parallel. The formulations are quite simple. For a series connection, we
have the fundamental relationship that

(1.12.33)

Written in matrix form these relationships become

(1.12.34)

where D and F can be any drop or flow variables.
For a parallel element we have the relationships that

(1.12.35)

from which we can immediately write the matrix form

(1.12.36)
These forms are most useful and we can derive nearly every case of interest from
them.

As an example consider the T-matrix of a T network ladder topology as
shown in reference.

(1.12.37)

Nearly any level of complexity is possible in either the electrical or mechanical
domains, but we will see the true value of the T-matrix when we get to the elec-
tro-acoustical problems.
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A  L I T T L E  S I G N A L  P R O C E S S I N G

1.13 Correlat ion and Spectral  Analysis6

A key concept in any filed which deals with systems is the use of transfer func-
tions. Consider the system shown below

X(ω)=the input signal at frequency ω=2π f
H(ω)=the complex multiplier of the input signal at ω
Y(ω)= the output signal

The system is then defined by
(1.13.38)

which leads to the definition of the transfer function

(1.13.39)

This equation is valid for all ω.  If we let the input signal contain all frequencies of
interest, i.e. X(ω)=1.0 (note that the phase is zero at all ω) then the transfer func-
tion is simply equal to the measured outputs complex spectrum. 

Note here that we could define the transfer function to be a function of two
frequencies ω1 and ω2 such that

(1.13.40)
which is called the bispectrum and it quantifies the second order component of a
nonlinear system. This concept can be generalized to any number of dimensions.

Taking a Fourier Transform of Eq.(1.13.38) we get

(1.13.41)
where ⊗ stands for convolution – a well know integration process. In this equa-
tion h(t) is known as the systems impulse response. If the input, as above, was flat
(i.e. 1.0) then x(t)=δ (0) (the Fourier Transform of a flat spectrum) and h(t) = y(t).
The output y(t) is the response to an impulse – the impulse response. This means
that the transfer function (frequency response) is the Fourier Transform of the
impulse response and visa-versa.

6. See Bendat, Engineering Applications of Correlation and Spectral Analysis.

H(ω)X(ω) Y(ω)

( ) ( ) ( )Y X Hω ω ω=
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If the input function is a random signal, then all of the above equation hold
except that we need to modify their interpretation. Since a random signal never
repeats we will never get the same input and output twice. This means that we
should expect different results in Eq.(1.13.39). The way around this is to define
the expected value operator E[ ]

 (1.13.42)

p(τ)=the probability density function of the signal
This equation will yield a weighted average of values, weighted by the likeliness of
occurrence. For our purposes p(t) will always be Gaussian.
Several useful cases occur

(1.13.43)

u=the mean value of x(t)

(1.13.44)

ψ²=mean square value of x(t)
The square root of ψ is called the rms value. Higher order moments can be
defined but are of far less useful.

If we define the cross-correlation function Rxy(t)

(1.13.45)

Rxx(t) is called the autocorrelation function.
Taking the Fourier Transform of Rxy(t) yields the cross-spectral density function

Sxy(ω) and the Fourier Transform of Rxx(t) is called the Power Spectral Density
function or PSD, Sxx(w).

By using all of the above results we can find that

(1.13.46)

which is a useful result, especially if Sxx(ω)=1.0 – white noise. There is one dis-
tinct difference in the definitions in Eq.(1.13.39) and Eq.(1.13.46). The later
equation considers only those input and output signals which are correlated, while
the former equation does not. For uncontaminated measurements, the two will be
identical, but for contaminated measurements only Eq.(1.13.46) will give the cor-
rect results. Contamination can occur as noise, reflections, or most importantly,
nonlinearity.
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It can be shown that the optimum system as shown by Eq.(1.13.46) is not
even the optimum linear system for a nonlinear system. The two transfer func-
tions are different.7 This is an important result when making measurements of
nonlinear systems.  The odd order nonlinearities are correlated with the linear sys-
tem and hence contaminate the measurement. It is often thought that the cross
spectrum approach to measuring a system is immune to nonlinearity, but it is not.
This measurement ignores even orders but not the odd orders – they are corre-
lated with the input signal.

1.14 Modeling Transfer Functions
One of the common tools that we will use in later chapters is that of modeling

a transfer function. There are numerous ways to do this and the whole subject
would take a text to describe.8 We will describe a technique that we have found
useful which highlights the general approach and leave the alternative techniques
to further reading.

Consider a system with a discretely sampled input x[n] and a discreetly sam-
pled output y[n].  The z transform Z{ } is defined by

(1.14.47)
In the z domain (the discrete equivalent of the frequency domain) we can repre-
sent the transfer function H(z) as

(1.14.48)
where B(z) and A(z) are the polynomials that we would like to determine. Note
from Eq.(1.7.19) that B(z) are the MA coefficients and A(z) are the AR coeffi-
cients. The roots of B(z) are therefore the zeros of the model and the roots of
A(z) the poles. 

If we now take the inverse z transform of Eq.(1.14.48) we can write out a set
of equations 

7. See Bendat, Nonlinear Systems Techniques and Applications
8. See Marple, Digital Spectral Analysis with Applications
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(1.14.49)

a[n]=the AR coefficients
b[n]=the MA coefficients

where we have assumed a value of a[0]=1 (without loss of generality since it only
scales the results) and that h[n]=0 for n < 0 (from causality). 

The equation for n > Q can be solved directly for the a[n] coefficients from

(1.14.50)

Thus for a given Q ≥ P we can find the a[n] coefficients directly from the impulse
response sequence by using any number of matrix techniques (although we have
found that Singular Value Decomposition SVD avoids a lot of pitfalls9). While
the optimum Q is not know a apriori, it is really not a problem to find several val-
ues of Q which work well. The results are not very sensitive to the value chosen so
long as it is not too large. 

Returning now to Eq.(1.14.49) we have for n < Q

(1.14.51)

which can be solved directly for the b[n]’s.
We thus have procedure for finding a model of any transfer function in a min-

imum number of terms
• Find H(ω) via FFT techniques selecting a frequency range and num-

ber of points which matches the desire resolution of the model. Too
many points will cause problem in fitting the parameters, less data is
the goal so use as few points in the FFT as permissible.

• Find the impulse response sequence by taking the inverse FFT of
H(ω) (which is really H(z)). The impulse sequence are simply the data

9. See Press, Numerical Recipes
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values. Smoothing H(ω) at the end points to force a real, causal
impulse response may be required.

• Find the a[n]’s from Eq.(1.14.50).
• Find the b[n]’s from Eq.(1.14.51).
• Further data reduction can be achieved by finding the roots of A(z)

(the poles) and B(z) (the zeros). Very close pole-zero pairs imply that
there were too many coefficients in the expansion and these pairs can
simple be discarded.

 With the above techniques we can simplify any transfer function to any order
(amount of data) desired. This data reduction will be used extensively in later
chapters.

1.15 Summary
This chapter has introduced some of the techniques that we will use in the fol-

lowing chapters.  It is not, by far, a complete discussion of these techniques, but it
does cover the general topics and gives references to where someone could go to
find out more information. 


