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T R A N S D U C E R  N O N L I N E A R I T Y

Loudspeaker distortion is a broad subject, especially if one considers linear dis-
tortion – frequency response – as part of the subject matter. In this chapter, we are
interested only in nonlinear distortion. A discussion of nonlinear distortion is by
its very nature fundamentally different than the subjects that we have dealt with
thus far. We have looked at tools and techniques for synthesizing and analyzing
various designs of transducers and transducer systems. When dealing with nonlin-
ear systems, one seldom “designs” the distortion characteristics, although this is
not without some attraction. We are mostly interested in eliminating distortion.
The goal of zero distortion is attractive, but not really practical, for it ignores the
realities of cost trade-offs required by the marketplace. Lowering distortion below
the point at which it is objectionable is not a good cost-benefit trade-off.

In order to perform the task of making an optimum trade-off between distor-
tion and perception, one must have capabilities in two areas: the analysis of nonlin-
ear systems and the subjective impression of nonlinear distortion. When these two
subjects are understood, then we can begin to optimize the design. In this chapter,
we will deal with both of these aspects of the problem. Nonlinear systems theory
is well established and we can discuss it with certainty. However, the subjective
perception of distortion is not well understood, mostly because there is little data
on which to support or disprove a hypothesis. 

10.1 Nonlinear Systems Theory
There are a multitude of mechanisms that can create distortion products in a

transducer. If we are going to design out these mechanisms, then we must know
what these mechanisms are and how they effect the end result – the distorted sig-
nal. While there are many mechanisms, fortunately there is one feature that is com-
mon among the majority of them. We can define a function that relates the
instantaneous output level of some quantity versus the instantaneous input level of
this same quantity. When this relationship is not a straight line, then the system is
said to be nonlinear. Several examples of this function are shown in Fig.10-1.
These curves denotes what is known in the literature as a memoryless nonlinear
transfer function, memoryless because it has no frequency dependence. It is some-
times called a static nonlinearity. The importance of this distinction will become
apparent later.
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The input-output relationship can be between any two variables of the same
type, displacement, velocity, current, voltage, any variable of the system. The only
requirement is that this “block” must be placed in the domain in which it is
defined and it must relate identical quantities. These are not the most general
restrictions, but they make our analysis simpler without compromising its validity.

Note in Fig.10-1 that the clipping transfer characteristic is completely linear, as
long as the input remains below |.6|. However, if we allow the input to go to .7
or 1.0, then the distortion becomes highly dependent on the input level. This
makes clear an important point that we must always consider. What values are we
going to allow as inputs?

If we scale the output values to be unity when they reach some predefined
level, xpeak (we would have preferred the term xmax, but its historical usage, which
is inconsistent with our usage here, prohibits us from doing that), then we can see
that the output scale would go from -1 to 1. What we use as an input scale is not
arbitrary and it should be arranged so that the output level never exceeds ±1 for
any valid input level. If this is not done, then there can be an ambiguity (and a fail-
ure of the applicability of the theory) in the series expansions that we will use. If
the system has a scalable gain, then we can always scale the gain to accomplish
this task. If, on the other hand, the system gain is set by the systems characteris-
tics then we must be careful in selecting the allowed input range so as to get a
valid mapping curve. 

We should realize by now (remember orthogonal sets of functions) that the
curves shown in Fig.10-1 can be expanded in many different ways. For example
we could expand the curves into Legendre Polynomials and study theses expan-
sions in that domain. As we shall see, there are very good reasons to do that. We
could also expand them as Chebycheff Polynomials, or Laguerre Polynomials (as
Weiner does1) etc. For our purposes right now, a simple polynomial expansion is
attractive because of its simplicity. We will let

(10.1.1)

The solid curve in Fig.10-1 has the equation
(10.1.2)

Here, the gain of the system is given as .8, but since the output does not come
close to either ±1, we should adjust the gain to be 1.1 to better normalize the
curves or we should readjust the allowed input scaling. The results of any nonlin-
ear analysis depend on the choice of xpeak and the gain values. The choice of too
large a value for xpeak and/or too small a gain will result in larger higher order
coefficients. It should be apparent that the value of xpeak = 1.0 in the transfer
characteristic of Eq.(10.1.2) can never be reached with the input levels as defined.
It is always desirable to define xpeak in such a way that one of the limits is reached

1. see Schetzen, The Volterra and Weiner Theories of Nonlinear Systems
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when the limits of the input is reached,  i.e. the maximum output should always be
normalized to the maximum input. When this is done we will get a more consis-
tent and useful specification of the system.

The first term in equation Eq.(10.1.1) is called the offset term. None of the
curves in the figure have an offset. The second term is the gain. The third term is
know as the second order or quadratic nonlinearity. The fourth term is know as the
third order or cubic nonlinearity. Higher order terms are simply defined by their
powers, i.e. fifth order, x5 and so on. There is no limit to the number of orders
that can be required to represent a given transfer characteristic. For example, the
two curves with sharp slope discontinuities would require very high orders to fit
them over the range of -1 to 1. This is an extremely important point, as we shall
see.

As an example of the effect of a nonlinearity in a system, consider a nonlinear
transfer function with only gain and a quadratic nonlinearity. We know that for a
sinusoidal excitation, the output will contain harmonics of the input. Given an
input x(t), this can be shown as follows

(10.1.3)

then the output y(t) will be

(10.1.4)

The output contains the original input scaled by the gain a1 and a second har-
monic, at 2ω scaled by a2A²/2. If the output is normalized to the input then A can
be taken as one. There is also an offset term in the output that results from a sec-
ond order nonlinearity. The use of complex exponentials is desirable due to the
simplicity of taking powers, but we need to remember that we must always use
two complex exponentials (both signs) or we get an incorrect result. (Why?)

We can now see an interesting relationship by considering the well know
expansion of powers of x into Legendre Polynomials2. These results are

(10.1.5)

which means that

2.  See Skudryk, The Foundations of Acoustics
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(10.1.6)

It may not be obvious how we would use this information, so let’s reconsider our
previous example. 

Let x(t)=A cos(ω t) as in our example above (a1x+a2x²) which would yield

(10.1.7)

the identical result. This means that the Legendre Polynomials offer us a conve-
nient and concise alternative to determining the harmonic content of any order of
nonlinearity. We could of expanded the nonlinear transfer functions directly in
terms of the Legendre Polynomials, but this might not have been as clear.

10.2 Loudspeaker Component Nonlinearity
In considering a loudspeaker as a nonlinear system, we must consider how

each element in the system contributes to the nonlinear portion of the problem.
The fundamental elements are listed in the table below:

It may seem unusual to see thermal variations listed as a nonlinear characteris-
tic, but in fact they are. What makes them fundamentally different from what we
usually think of as nonlinearity is the fact that the thermal variations are very slow.
They don’t happen at acoustic frequencies and hence they don’t generate nonlin-

component  displacement
variation

 temperature
variation  importance

mass  none  none  none
compliance  high  low  medium

mechanical resistance  low  low  none
Bl  high  medium  high
Re  None  high  medium

inductance  medium  low  low
Table 10.1: 
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ear by-products that lie in band as sound. They do have a strong effect on system
performance, however, and must not be ignored. We will discuss the thermal
aspects or our investigation at the end of this chapter.

The importance column is based on our judgment as to the propensity of the
component to generate objectionable types of audible distortion. The only high
on the list for displacement variations is Bl and it is certainly well understood that
Bl variation with displacement is a major, if not the major source of loudspeaker
nonlinearity. Next on the list would be the thermal variations of Re and the Bl
product – principally the magnet flux. Finally, would be the compliance variation
with displacement (although the stiffness variation with displacement is more use-
ful).

The Bl product nonlinearity is complicated as we shall see. On the other hand,
the stiffness is relatively easy to handle. The inductance is a little more compli-
cated than the stiffness, but certainly easier than the Bl product. All of these non-
linear components have memory – i.e. they are frequency dependent. 

When we describe the Bl product and suspension stiffness nonlinearity as
being the principal ones we have excluded some important issues regarding the
nonlinearity of the medium. The medium of air is considered to be very linear – at
least when compared to other mediums like water. It is still true that air can be a
significant source of nonlinearity in some types of transducers, particularly com-
pression drivers. The pressures just adjacent to the diaphragm in these devices
can become so high as to generate nonlinear distortion which is comparable to
that in the driver itself. The issue here is that there is no solution to this problem
other than reducing the actual amplitudes of the pressure changes. (We will not
consider electronic means of canceling this distortion. They are not within our
scope here.) The primary consideration for the pressure magnitudes is the com-
pression ratio, which for a typical 10:1 ratio increases the SPL at the diaphragm by
20dB – a significant amount. Reducing this compression ratio substantially
reduces the SPL, but does so at the sacrifice of efficiency. One must make the
choice in these devices between low distortion or high efficiency. We should point
out, however, that nonlinearity of the medium is extremely low order, dominantly
quadratic, and as such would not, by our hypothesis (to follow), be found to be
highly objectionable. The trade-off between the perception of objectionable dis-
tortion in a compression driver versus efficiency has not been studied to our
knowledge.

It has been shown3,4 that most nonlinear systems can be considered to be a
parallel combination of subsystems, each branch having a particular nonlinear
transfer function order. In general, each leg has its own frequency dependence.
This is shown schematically in the figure below. There can be an infinite number
of branches, but we have only shown three.

3.  see Schetzin, The Volterra and Wiener Theories of Nonlinear Systems
4.  see Bendat, Nonlinear Systems Techniques and Applications
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It is actually amazing that a nonlinear system can be represented in this way, for
this is a very simple model. Unfortunately, a loudspeaker does not fit this simpli-
fied approach or at least not exactly. 

Considering the nonlinear form for differential equation for a voltage driven
moving coil transducer with negligible load impedance as shown in Eq.(1.9.22)
on page 16. We can write this differential equation for the diaphragm motion as

(10.2.8)

Mm = mechanical mass of system
Rm = mechanical resistance of system
zm = external mechanical load on system
x = diaphragm displacement
e(t) = voltage input
Re = coil resistance
Bl(x) = displacement dependent force factor
k(x) = displacement dependent diaphragm stiffness

There are two complications to fitting this equation into the block diagram form
of Fig.10-1. The first is that the forcing function itself is nonlinear and second is
that the electromagnetic resistance terms are proportional to the square of a non-
linear function. These problems result from the fact that we have a transformer
(or a gyrator depending on the model chosen) with a nonlinear coupling factor, a
situation not usually found in the classical study of nonlinear systems. Most non-
linear theory considers systems whose nonlinear coefficients only appear on the
left hand side of Eq.(10.2.8). 

The situation described above requires a model like that in Fig.10-2. Models
like this can be extremely hard to analyze analytically. It is not too hard to analyze
with numerical techniques that have coefficients fit to measured data, but it is
very difficult to derive simple equations for the nonlinear terms. The question
arises as to what simplifications would we have to make in order to allow a trans-

Figure 10-1 -  Schematic of a nonlinear system
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ducer to be modeled as shown in Fig.10-1. This form is highly desirable since the
analysis of systems like these are a simple extension of the well established linear
systems theory (see Sec.1.13 on page 21). Simplification of a nonlinear transducer
to the simpler model would allow us analyze this system in a manner which is
analogous to that of a multiple input single output linear system5. 

It turns out that there is really only one major assumption that we need to
make in order to make the desired simplifications, the system must be approxi-
mately linear; the nonlinearity can be thought of as first and second order pertur-
bations of the linear response. In other words, we are simply saying that the
nonlinear terms are small relative to the linear ones. This is not too severe a limi-
tations for some uses, but it is for others. Our intention in this chapter is to give
the reader sufficient background in nonlinear theory so that the techniques that
we will introduce in a later chapter will have a clear foundation in theory. Our pri-
mary consideration then is to obtain the ability to analyze the major components
nonlinearities. 

From a perceptual standpoint the main contributor to transducer distortion
will be nonlinearity in the motor. Take for instance the Bl product of a moving
coil loudspeaker. Even the simplest form of nonlinearity, second-order, will gen-
erate fourth order systems response terms in the electromagnetic damping (the
dominant one), along with second-order nonlinearities in the driving function.
This means that this simplest of all Bl nonlinearity will cause distortion products
up to the sixth order. Third-order nonlinearity of this component will cause dis-
tortion products up to the ninth order. Clearly, motor nonlinearity for a loud-
speaker must be small if one is to consider the system to be even quasi-linear.
This becomes the most limiting restriction on our model. Significant orders
higher than the third would create a transducer which would have an almost cha-
otic output for large inputs. We have probably all heard this type of distortion.

Proceeding on with the traditional multiple leg nonlinear system analysis we
have to allow each leg to have two transfer functions as shown below. The nonlin-
earity block is now a memory-less nonlinearity of a single order 2…n. 

As an example of how we might apply this model, consider a transducer
example. The block diagram shown in Fig.10-2 has a voltage as an input and a
pressure as an output. The nonlinearity that we are considering for the Bl and

5.  Bendat and Piersol, Engineering Applications of Correlation 

Linear SystemΣ

Nonlinear System

E(t) x(t)

Figure 10-2 -  System block diagram for a loudspeaker
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stiffness terms are both functions of the displacement of the diaphragm. There-
fore, the first block in each leg for each nonlinearity would be the transfer func-
tion from the voltage to the diaphragm displacement, a high-pass function (see
Fig.1-9 on page 17). The first transfer functions for each leg in our example
should therefore become identical (we will find this to be mostly true and we have
assumed this in the figure above). If there are nonlinear characteristics which
depend on the diaphragm velocity, like Doppler distortion, or viscous flow type
nonlinearity (most viscous related resistance goes as the velocity squared), then
this pre-transfer function would map from the voltage to the velocity, a bandpass
function. There are only two types of nonlinear transfer curves that are encoun-
tered in audio systems; those nonlinear in a variable and those nonlinear in the
slope of a variable. There could be acceleration nonlinearity, but these are not
found to be significant in transducers. Acceleration and velocity nonlinearity will
not be discussed owing to the fact that they are so much smaller than the ones
that we will be discussing. The analysis shown here, however, is directly applica-
ble.

The next block is the memoryless nonlinear transfer function for the particu-
lar leg. It is x¹, x², x³, or some higher order function in x. Following this block is
another transfer function which maps from the displacement for that particular
leg to that components effect on the pressure response. This later transfer func-
tion contains the coefficients an from Eq.(10.1.1). In general there are n legs, one
for each nonlinear term in the nonlinear transfer function expansion.

We now have to consider the post transfer functions. These are different for
each of the different legs, and will be functions of the Bl, compliance, etc. nonlin-
ear representations. Lets assume that we can represent the major nonlinear com-
ponents as

(10.2.9)
and

(10.2.10)
Using these forms in the differential equation Eq.(10.2.8) we get

(10.2.11)
where we have already simplified the equation by expanding the Bl(x)2 term and
retaining only orders up to the third. The limitations of our assumption about
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small nonlinearity in the terms is already evident in the above equation. The elec-
tromagnetic damping term cannot go negative which implies that

(10.2.12)

for all valid displacements x. Since there will always become value of x for which
this is not true the value of x where the above term becomes zero makes an ideal
definition of xpeak

(10.2.13)

where we take the sign which yields the smallest value. We can immediately see
that b2 must always be negative. We cannot analyze a system beyond xpeak
because our equations will become unstable. 

Just as we have shown to be so effective in Sec.10.1, we will assume an input
that is a Legendre polynomial

(10.2.14)
and an output as a series of these polynomials

(10.2.15)

where θ =ω t. If we plug these two functions into the nonlinear differential equa-
tion using Eq.(10.1.6) we can expand the resulting equation into a set of coeffi-
cients of the different orders of the Legendre Polynomials. This process results a
very large equation which is extremely unwieldy (we will let a computer sort out
the algebra). We retained all orders of nonlinearity, but dropped terms which are
higher in Pn than three. Higher orders could be calculated but with some addi-
tional complexity (we will leave that exercise ...). Finally we solve each equation in
Pn for an.

The result of this rather elaborate algebraic manipulation is, for a1

(10.2.16)
This is a satisfying result for it quantifies several things that we know to be true.

 First, there are corrections to the force factor

(10.2.17)
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which result in a compression of the output because b2<0. We can also see that
the impedance function in the denominator stiffens, if k2 >0, as it almost always is
and there is also a modification of the electromagnetic damping term

(10.2.18)
A final check is, as the nonlinear terms in Eq.(10.2.16) go to zero the correct lin-
ear system results. 

The next term of interest is the offset term

(10.2.19)

from which we can see that the offset is frequency dependent.
The next term will be the quadratic, P2 term

(10.2.20)

and finally we get the P3 cubic values

(10.2.21)

Note that the denominators in each of these equations are almost identical to
the denominator for the linear terms (as we hypothesized it should be). There will
not be much error in assuming that the denominators for the a0, a2 and a3 coef-
ficients are all equal to the linear one (although in our results we have not done
that). These equations all depend on each other and some form of iterative solu-
tion must be performed. We first assume a2 and a3 are both zero in Eq.(10.2.16)
and solve for a1(ω). Most likely we would solve Eq.(10.2.21) with a0 = a2 = 0
followed by Eq.(10.2.20) with a0 = 0. The process should be clear. We can rein-
sert new values back into previously calculated equation and continue this process
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until there are no longer major changes in the results. Iterations beyond two are
seldom required.

We must not forget that what we have solved for are not the amplitudes of the
harmonics (fundamental included) but the amplitudes of the Legendre Polynomi-
als. To get the harmonic amplitudes we note that

(10.2.22)

xn(ω) = the amplitudes of the harmonics
We should make a few comments about why we used the Legendre Polynomials
in these equations. Mostly, it makes the analysis easier to do since the equations
only contain simple products of two Pn’s which can always be reduced to a simple
sum of single terms. Using complex exponentials for the calculations is possible,
but long and complex.

10.3 Simulated Results  of  a  Nonlinear Transducer
At this point, we will look at some results for a simulated example. We will use

the linear values for the transducer parameters as defined in Sec.2.7 on page 39
and shown in Fig.2-7. We will let the parameters Bl(x) and k(x) be

(10.3.23)
with x normalized to xpeak and

(10.3.24)
which are both plotted in Fig.10-3.

The predicted linear displacement output for both the compressed and un-
compressed calculations are shown in Fig.10-4. Note that the compressed dis-
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placement has been substantially reduced from the un-compressed output owing
to the decreased motor strength. These curves are for an input signal which cre-
ates an excursion at low frequencies equal to the peak excursion xpeak, to which
the above two expansions (Eq.(10.3.23) and Eq.(10.3.24)) have been normalized. 

 The predicted higher order displacement outputs are all shown in Fig.10-5. It
is an easy matter to convert these displacements into sound pressures. Note that
these curves have a small dip at about resonance. This implies that resonance is
not a good place to evaluate distortion, as is so often done. The real problem is
the extremely large displacements below resonance, which would modulate all
frequencies above resonance, if there are any signals present in this region. For
this reason, it is extremely important to control excursion below resonance in a
loudspeaker. The transducer must not be allowed to produce sound at these fre-
quencies because it will likely produce more distortion than actual sound. With
proper design of the excursion capability a driver can be operated in this region,
but this takes careful consideration of the nonlinear components.

In concluding this section, we would like to point out that we have only done
a cursory job of analyzing the nonlinearity of a transducer. The subject in its com-
plete form is massive, albeit quite interesting. The interested reader should first
read Schetzen6 for a complete understanding of the theory or Bendat7 for a more
practical view of the subject. The main point that we want to make here is that the
orders, whether in terms of Legendre Polynomials or harmonics, have a fre-

6. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems
7. Bendat, Nonlinear Systems Techniques and Applications

Figure 10-4 -  Linear displacement output and the compressed linear displacement
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quency response in an analogous manner to the linear response and that the
higher order terms frequency response are direct functions of the nonlinear
parameters. From this, we can conclude that a knowledge of the frequency
response of the orders should allow us to calculate the terms in Eq.(10.2.9) and
Eq.(10.2.10). It would be a real advantage if we could use standard techniques
from linear systems theory on our multi-legged model in order to analyze the
nonlinear components of a transducer. We will develop this technique in Chap.12.

10.4 Background On Distort ion Perception
Now that we have seen how we can analyze a loudspeaker to determine its

nonlinearity in terms of the nonlinear transfer functions expanded into polyno-
mial orders, we would like to have some way to relate this concrete mathematical
theory to the less quantitative subjective aspects of the perception of distortion.
We will propose a hypothesis for such a relationship, but we will do so without
proof, since there is no data to either validate or invalidate it. Our hypothesis will
be based on what we do know about nonlinear systems and human auditory per-
ception.

Historically, the audio community has viewed distortion in the context of a
systems nonlinear response to a sinusoid or sometimes, two or more sinusoids,
basically a signal based metric. A metric is a value which is given to a system to
indicate its relative scaling within some predefined context. For instance, temper-
ature is a metric when the context is human perception. We can describe the per-

Figure 10-5 -  Higher order displacement transfer functions 
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ception of temperature in words like hot, warm, cool or cold. Since temperature
also has an exact scientific scaling, it is a simple matter to map from the subjective
metric to the physical one, although we must always remember that the subjective
terms are relative and precise mapping is not possible. Whenever human percep-
tion is involved, metrics can only ever be statistically relevant.

The current metrics of distortion are, Total Harmonic Distortion (THD);
Inter-Modulation Distortion (IM), multi-tone intermodulation, etc., all expressed
as a percentage – the ratio of the distortion by-products to the total system out-
put. In an absolute sense this view of distortion is satisfactory. If our goal is to
eliminate all distortion then clearly any measure of its level is adequate. This goal,
as we have stated, is naive. It is neither reasonable nor desirable to set as our goal
the complete elimination of all distortion. In this context, the signal-based metrics
fall short of the mark, for they fail to correlate with, or even consider, subjective
impression.

By their very nature all transducers have limitations. We have seen some very
real limitations on frequency response and directivity in previous chapters, but up
until now we have not considered any limitations on output from these devices.
As the transducers output increases, the range of motion of the mechanical sys-
tem generating (or receiving) the sound must also increase. To have unlimited
output, the system would have to be capable of unlimited motion – a physical
impossibility. Therefore the physical constraints that exist in any transducer will
inherently limit its output. The manner in which this limitation occurs is impor-
tant for, as we have seen, there are an infinite number of ways that this can occur.
It is this immense variety of nonlinear mechanisms that prevents a single metric
from being very meaningful. 

With a reliable metric we could base psychoacoustic studies on it and the same
mapping could be done for transducer distortion as we described for tempera-
ture. But to be useful a metric must be consistent – the same number must mean
the same thing in every context and there must be a close correlation between the
metric and the subjective response. This is where the signal-based distortion met-
rics fail. It can be shown that .01% THD in an amplifier can be perceived as unac-
ceptable while 1% THD in a loudspeaker can be perceived as inaudible. This
simple fact invalidates THD as a viable metric for discussion of the perception of
distortion. Furthermore, 1% THD is not at all the same as 1% IM. Some of the
signal-based metrics may be “better” than others, but in our opinion they all fall
short of what we are seeking.

How then does one establish a metric for the quantification of distortion that
is consistent, reliable and (hopefully) correlates with subjective impression? Based
on what is known about the human hearing system and what we have learned
about the nonlinear systems analysis, we will propose such a metric. In keeping
with our promise – that this would be a theoretical text – we will not offer up any
experimental results or supporting or refuting data. This will be left as an exercise for
the reader!
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10.5 The Psychoacoustics  of Distort ion Perception
In Chap.13, we will attempt to supply sufficient information on the human

hearing system to support our usage of the concepts here. The reader may wish to
consult this chapter if the psychoacoustic terminology or the concepts being used
are unfamiliar.

One reason that the perception of nonlinear distortion is so complex is that
the hearing mechanism itself is not linear and taken as a “system” it is quite com-
plex. It should thus be expected that it will be a difficult task to ascertain what
levels and types of nonlinearity the ear can perceive and even more difficult will
be the scaling of the subjective impression of these nonlinear functions.

The attribute of hearing that overwhelmingly dominates the perception of dis-
tortion is that of masking. Masking is also the principal effect used in the creation
of all modern techniques of perceptual coders (MP3, AAC, etc.). When masking
effects allows us to reduce the data by 90% or more, in a way that is subjectively
benign, then one has to suspect that masking would have a profound effect on the
perception of nonlinear distortion. Masking has no analog in linear systems the-
ory, and it is not very intuitive since it does not occur in common systems other
than the ear.

From our knowledge of masking we postulate the following two fundamental
characteristics.

• Masking is predominately upward toward higher frequencies although
masking does occur in both directions. 

• The masking effect widens – masking occurs further away from the
masker – at a substantial rate with excitation level.

Given these characteristics we will now hypothesize the following three Percep-
tion Principles.

• Distortion by-products that are created upward in frequency are likely
to be less perceptible (masked to a greater extent) than those that fall
lower in frequency (postulate 1).

• Distortion by-products that lie closer to the excitation are likely to be
less perceptible (masked) than those that lie farther away (masking is a
localized effect – it only occurs in the vicinity of the masker).

• Distortion by-products of any kind are likely to be more perceptible
at lower levels than at higher levels (postulate 2).

The following discussion relies on these “principles,” given without proof, as its
foundation. If one accepts these principles as valid, then what we say in the fol-
lowing sections should have substantial validity.

We have already seen the following facts.
• Odd and even orders do not interact, odd orders generate only odd

harmonics, even orders generate only even harmonics.
• An nth order nonlinearity generates nth order harmonics and every

other harmonic below it.
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• Harmonics of pure tones are generated only above the input signal
(this is true only for nonlinear transfer functions which can be repre-
sented by Eq.(10.1.1), which, fortunately for us, is true for everything
that we will talk about.)

• For multi-tones an nth order nonlinearity causes sidebands at ±n
times the modulation frequency and every other value of n below it as
well as harmonics (as above).

These may all seem obvious since we have already provided the mathematical
foundation for these points. The interesting part comes next. 

Consider Fig.10-6 where typical distortion products are shown for tones in
four situations: a low order nonlinearity and a high order nonlinearity, at a low sig-
nal level and a high signal level. Approximate masking curves of the principle
masker tone are also shown. We can see that the higher order distortion products
are not masked as well as the lower order ones and that the masking effect is
greater at the higher signal level. The low order distortion at a high signal level is
completely masked in this figure. The high order distortion is never masked, but it
would be more audible at low levels.

If we take these facts and join them up with our Perception Principles then we
can make the following statements, which are, perhaps, not exact, but are, none
the less, more valid than not.

• The masking effect of the human ear causes higher order nonlineari-
ties to be more audible than lower order ones.

• Distortion that rises with level can be completely masked if the order
of the nonlinearity is low.

Again these may seem intuitively obvious. 
These statements give rise to our hypothesis for a new approach to quantify-

ing nonlinearity (distortion):
• Nonlinearity within the specified operating output range should be of

low order – the importance of the order being weighted by (n - 1)²
where n is the order of the nonlinearity (n > 1).

• No order should increase with decreasing input level.
As qualitative measures these objectives are reasonable, but only with extensive
subjective testing will we be able to put quantitative values to the metric proposed
here – an interesting study that has yet to be done.

Consider now our first example of the failure of THD to differentiate between
loudspeaker distortion and amplifier distortion. If the amplifier has crossover dis-
tortion then this type of nonlinearity violates both of our principles – it is both
very high order and it increases (as a proportion of the linear terms) with decreas-
ing signal level. One would expect, based on our hypothesis, that this type of dis-
tortion would be highly objectionable and it is. Now consider a loudspeaker.
Unless it has some severe design or manufacturing problems, it will have  lower
orders of nonlinearity and the distortion will only rise with level. Based on our
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principles, we should expect this type of distortion to be benign, almost inaudible,
and this is in fact what we find to be true. Generally speaking, electronics and
mechanics have different nonlinear characteristics. It is not at all uncommon to
see very high orders of nonlinearity in electronics, but it is rare to see higher
orders in mechanical systems. Our new view of distortion explains a lot of the
THD based metric paradoxes.

So basically our new “metric” is the actual parameters of the nonlinear com-
ponents themselves, or the frequency response of the orders, weighted by their
order and required to only grow with level (again relative to the linear term). It is
not that uncommon to see discussions of 2nd and 3rd order nonlinearity – we did
it ourselves – but it is rare to see a discussion of the higher order nonlinearity. If
increasing orders are indeed more audible than lower orders then limiting our dis-
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Figure 10-6 -  Schematic representation of the effect of masking on the 
perception of distortion
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cussions to only the lower two orders is seriously flawed. The root cause of distor-
tion is the underlying nonlinearity of the system or subsystem and the correct way
to discuss nonlinearity is with the orders of its nonlinear transfer function. When
one views the distortion problem in this way, signal based distortion metrics (IM,
THD, etc.) become irrelevant. It is, and will likely remain so, unclear as to the rela-
tionship of the signal-based metrics to subjective impression. It is the authors
hope that the audio community will give the outdated notion of THD, IM, signal
types, etc. (signal-based concepts) as these are all just symptoms of the real prob-
lem – nonlinearity.

10.6 Thermal  Nonlinearity
It may perhaps be a misnomer to call thermal effects a nonlinearity since they

do not cause distortion in the usual sense of signal distortion. Thermal effects in
transducers generally do not generate distortion by products, but they do distort
the frequency response – i.e. they cause severe linear distortion. In an ideal sys-
tem, just like nonlinearity, there would not be any dependence of the parameters
on the temperature, but that, like nonlinearity, is not realistic. Since we cannot
eliminate these thermal changes, we need to understand how important they are
and how we might minimize their negative aspects. The subject of thermal param-
eter dependence is important and we felt that this is the best place to put this dis-
cussion. We will talk specifically about loudspeakers in this discussion, but the
problems exist in any motor structure to some degree.

It is likely that all of the parameters of a moving coil loudspeaker are thermally
dependent, but there are two that are critically so. The first is the voice coils elec-
trical resistance Re, which increases with increasing temperature at a predictable
rate. The second is the Bl product which will also vary with temperature at a pre-
dictable rate, which almost always falls with temperature. The complexity here is
that these two effects occur over substantially different time scales due to the dif-
ferent thermal masses involved.

The thermal problem is another differential equation that has only a single
first order derivative. It can also be simplified with “lumped parameter” methods
into an electrical equivalent circuit which is composed of resistors and capacitors
with the voltage representing the temperature and the current the thermal flux.
(There are no inductors in this model.) A simple thermal model of a loudspeaker
motor structure is shown in Fig.10-7. This is an extremely simple circuit, but it
does a good job of demonstrating what we need to understand. 

The current source in this model is the heat generated in the voice coil as

(10.6.25)
 = the real part of the transducers complex electrical input 

impedance
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This heat will take a finite, but very small amount of time to raise the voice coil
temperature, denoted as T_vc. This thermal resistance Rvc must be finite or the
voice coil’s temperature would rise immediately, which cannot be true since, albeit
it is small, the voice coil does have some thermal mass and it does take a finite
amount of time for the heat generation to raise the temperature of this thermal
mass. If this were not true and the voice coil did in fact change temperature
instantaneously then there would be distortion by-products created by the ther-
mal modulation of the voice coil resistance. In fact, only if the time constant for
the voice coil heating is longer than the period of the lowest frequency of usage
can we ignore the resistance modulation effects as actual signal distortion. Fortu-
nately, most woofers have substantial voice coils and this thermal modulation dis-
tortion can usually be ignored.

The next thermal resistance, Rmag, is from the voice coil to what is probably
the largest heat sink (thermal capacitor) in the system, the magnet structure.
Rmag is a fairly high resistance and the one we would most like to be low. The
thermal mass of the magnet causes the time constant for T_mag to be very long.
The magnet heats slowly, but it also cools slowly. There could be a resistance to
ground at T_mag which would represent thermal radiation off of the magnet or
thermal cooling via convection, we have lumped all of these effects into Rfield.
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Figure 10-7 -  Thermal model for a loudspeaker

T_vc = voice coil temperature
T_magnet = magnet temperature
T_frame = frame and enclosure temperature
Rvc = thermal resistance from heat generation to voice coil
Rmag = thermal resistance from voice coil to motor struc-

ture
Rframe = thermal resistance from magnet to frame
Rfield = lumped thermal resistance from motor to infinity
Cap VC = thermal capacity of voice coil
Cap Mag = thermal capacity of motor
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The voice coil temperature will follow the time variations of Eq.(10.6.25) fairly
closely with only a short time averaging and lag of the input signal. The magnet,
on the other hand, has a very long time constant. For our purposes, we can simply
assume that the magnet temperature will continue to rise until it reaches the mean
temperature of Eq.(10.6.25) over a very long time interval – perhaps hours.

It is evident that we must consider both the effect of the voice coil tempera-
ture rise as well as the magnet temperature rise, although we will do so in different
ways. By simply making the flux density B and the resistance Re functions of the
temperature in our standard T-matrix models, we can easily study these two
effects. The vastly different time constants makes them virtually independent and
the effects will be additive. For our example, we will reexamine the system of
Fig.5-19 on page 117. Fig.10-8 shows the response of this system in four states:

• normal – when the driver is first energized and a low signal is applied.
• short term – as above but for high level signals
• long term – after the magnet has heated but a low level signal is applied
• both – a hot magnet with a high level signal applied

Initially, the response will modulate between the normal and short term curves
depending on signal level, but as time goes on it will modulate between the long
term curve and the both curve. When one also considers that at high input levels,
there will be nonlinear effects, such as the loss of Bl with excursion the high level
system output can get very poor indeed.
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Figure 10-8 -  Thermal variations for a typical bandpass system at 80°C
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Fig.10-9 shows the improvement gained by the use of ALNICO as the mag-
net. ALNICO has almost no thermal variation in its flux. While an improvement,
the critical problem that remains is the variation of the resistance with tempera-
ture. Each magnet type has its own particular thermal dependence. NdFeB has
about half the variation of ceramic (the highest) and several times that of SmCo,
which is comparable to but a little higher than ALNICO. We must also keep in
mind that the thermal capacities of each of these magnet will differ quite substan-
tially.

In order to control the remaining thermal modulation effects, we must look at
the actual voice coil material. The common voice coil materials, copper and alu-
minum, have similar thermal dependence. In the case of copper however, the
addition of a small percentage of nickel makes an alloy which is noted for its low
change of resistance with temperature. If the voice coil is made of this material we
will get the response shown in Fig.10-10. This loudspeaker has a 6% nickel-cop-
per alloy voice coil with an ALNICO magnet. While this result is attractive the
addition of the nickel substantially raises the resistively of this copper alloy. This
requires that the voice coil wire be of a larger cross section area for a given Re and
hence a heavier voice coil results, which is never an advantage. The larger wire
does have the benefit of a larger surface area, which dissipates heat more readily,
improving the power handling capacity of the voice coil. This could, perhaps, off-
set the lower output that will result from the increased coil mass. At any rate,
these are all trade-offs which must be considered in the design.
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Figure 10-9 -  Thermal variations with ALNICO magnet
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A study of the circuit in Fig.10-7 will show that a change in the thermal resis-
tance values does little to change the effects noted here. It does help to prevent
catastrophic failure due to a thermal breakdown of the voice coil wire coating and
bonding, but it does not improve the thermal modulations – it only makes them
happen quicker or slower. The only way to actually reduce the thermal modula-
tion is to dissipate the heat off to ground (infinity), which could never be done
quickly enough, or implement some material changes which reduce the sensitivity
to temperature. Clearly any mechanism that removes heat from the motor struc-
ture is a benefit.

10.7 Summary
In this chapter, we investigated several effects which are inherent in a trans-

ducer and degrade its performance at higher levels. None of these effects can
actually be eliminated, but all of them can be minimized or optimized. To design a
transducer or a system without due consideration of its high level performance is
almost certain to result in a less than satisfactory design. To utilize a transducer
without a knowledge of its sensitivity to these effects invites trouble. These high
level performance issues are often the driving forces behind trade-offs in size,
weight, performance and most notably cost. Balancing these trade-offs is the art.
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Figure 10-10 -  Thermal modulation for ALNICO and 6% nickel wire


