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2.1 Moving Coil  Motor Structure1

In our development of a basic understanding of how a transducer works, we
will consider three fundamental parts: the motor, the electrical to mechanical con-
version, the diaphragm mechanics, and the sound radiation. We will investigate
these elements in this same order.

Nearly all loudspeakers use the
same basic motor structure, a coil
of wire – the voice coil – immersed
in a static magnetic field. There is a
good reason for the predominance
of this type of motor structure and
we will see why. A simple voice coil
configuration in axi-symmetric
cross section, with the terms
defined, is shown below. The flux
can be created by any means neces-
sary, although it is usually a perma-
nent magnet. When a current I is
sent through the coil (into the page)
a force F is created as

(2.1.1)
B = Flux density
l = length of wire in B

In order to completely define this object both the input (electrical) and the output
(mechanical) must be considered. In other words, we must also consider the effect

1.  See Beranek Acoustics

Flux B

Current I

Force F

Figure 2-1 -  Moving coil 
topology with definitions

( ) ( )F Bl Iω ω=



TRA NS D UC ER ME CH AN IS M S -  27

that this object has on the electrical side. We know that it will have a back EMF
given by

(2.1.2)

These two equations can be conveniently combined into a single T-matrix form
as

(2.1.3)

Note that this formulation does not contain any restrictions on the actual dis-
placement of the coil. However, in practice, the length of the coil winding limits
the real excursion. The coil can, of course, be made to be of any length desired,
although there are practical limits. Therefore, this type of motor has the capability
of large excursions if one is willing to accept the loss of efficiency that is associ-
ated with allowing these excursions.

2.2 Variable  Reluctance Motor Structure2

The second most common form
of motor structure is the variable
reluctance motor. An example of
which is shown in Fig.2-2. This
type of motor has wide applica-
tion in hearing aids for several
reasons. The most important is
the ability to make it very small.
The second is its high internal
impedance. This motor can
deliver a large force efficiently,
but with only a very limited excur-
sion capability. We will see these
characteristics later in this chap-
ter.
There is a flux path around the

magnet material of the armature and back through the magnet. If a current is sent
through the coil of wire then the flux will be modulated according to the current.
This modulating flux will cause the armature to be attracted to and repelled from
the magnet (relative to its static position) in direct proportional to the current in
the coil (to first order). When the armatures motion is attached to a diaphragm
then sound is emitted from the diaphragm. 

2.  See Hunt, Electroacoustics.
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This motor can be analyzed as follows. Hunt shows the basic form for a mag-
netic gap as

(2.2.4)

Bg = the gap flux,
Sg = the gap area,
d = the gap width,
N = number of turns in coil,
µ0 = the permeability of free space

These variables are shown in Fig. 2-3.

Rewriting this into a form which is more usable to us (electrical on one side,
mechanical on the other) we obtain

(2.2.5)

The variable ze represents all of the electric domain impedances of the coil that
do not contribute to creating a force. This term is essentially the DC resistance of
the coil, but there can also be other parasitics involved.
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Eq.(2.2.5) is not in a very attractive form for our usage. It is hardly intuitive
and not very useful as it is. With some (off-line) matrix manipulations we can find
a more amenable form as shown below

(2.2.6)

This form is nearly what we desire with the exception of the term being sub-
tracted from the mechanical impedance of the system. This term has the form of
a stiffness in the mechanical domain. It is in fact a true negative stiffness that is a
direct result of this form of motor structure. If this negative stiffness becomes
greater than the mechanical stiffness of the system then the system becomes
unstable. The armature will lock up in a closed position, unable to return to a neu-
tral point.

We still seek a more concise form for the motor structure alone without the
complications of the electrical and mechanical impedances mixed in. With a little
more manipulation we can rewrite Eq.(2.2.6) as

(2.2.7)

While progressing, we are still not there. We would like to get each matrix to con-
tain only one variable so that we can see how they link together. In order to do
that we will need to write out the terms and pull out a matrix that depends on N.
This will result in

(2.2.8)

We can begin to see that this structure works similarly to a voice coil, except
that the coupling constant depends on the gap area and width, and there is a
strange matrix just ahead of the coupling matrix. This matrix accounts for the
interactions of the mechanical and electrical domains in a way that is not repre-
sented by a gyrator or a transformer. These terms can be thought of as time
derivatives of the quantity µ0Sg / d. It would be possible to further pull out the
terms Sg / d into a stand alone matrix, but there does not seem to be any compel-
ling reason to do that. One final step is instructive and that is to move the electri-
cal matrix for the static impedance of the coil inside the turns matrix and define a
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new variable rN to be the resistance per turn. Finally, multiplying the last two
matrices together yields a simple, albeit still not very intuitive matrix result

(2.2.9)

This equation can also be written with the electrical impedance left out and the
turns multiplied out to yield an alternate result for the coupling matrix

(2.2.10)

A few points are worth noting. First, this form is closer to that of a trans-
former than a gyrator, although it is neither. The coupling from the voltage to the
force decreases with increasing N and decreasing B. The current to force increases
with both. For large N, as is most common, the off diagonal term is small. This
type of motor structure becomes more efficient with voltage drive at higher fre-
quencies. It is a high impedance device because of the large N of typical designs
and tends to couple well into systems that require large forces with small excur-
sions. This structure might be useful for tweeters, but not for woofers. It is very
effective for hearing aid transducers which see a high mechanical load compared
to free space.

In practice, one wants to have the static flux and the dynamic flux follow sep-
arate paths to avoid flux modulation and distortion. There are many ways to do
this and actual implementations are left to further reading. One must also not for-
get that the gap width is modified by the permeability of the magnet if the magnet
is placed adjacent to the gap. This virtual gap, not the physical gap, is greater than
the actual gap as a result of this permeability.

2.3 Magnetic  Circuits3

In both of the previous motor structures, a permanent magnet is usually used
to supply the static energy for actuation. In this section, we will develop the basic
equations for designing a motor structure.

The simplest way to think about a motor structure is as a closed circuit, much
like an electric circuit. Given such a circuit, shown in Fig. 2-4, the following equa-
tion must hold for continuity of energy

3.  See Parker, Design and Analysis of Permanent Magnet Structures.
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(2.3.11)
Lm = the magnet length
Hm = the magnetizing potential per unit length
Lg = the air gap length (width in later discussions)
Hg = the air gap potential (which must be numerically equal to the 

air gap flux density Bg) 

We have assumed that there is no potential loss within the connecting arms of
this circuit, which is a reasonable assumption if the material is of good magnetic
permeability. If we further assume, again incorrectly, but a reasonable first cut
assumption, that flux is conserved in this circuit then

(2.3.12)
Am = the magnet area,
Bm = the magnets flux density at its operating point and 
Ag = the gap area

From these equations, we can derive the fundamental set of design equations
for the magnetic circuit given the desired gap properties

(2.3.13)

These equations require that the operating point of the magnet is known. The
operating point is the intersection of the curve representing the magnets flux ver-
sus magnetization potential and the load line. In detail, this determination is a
nonlinear process, but in practice we simply assume its location. Fig.2-5 shows a
typical magnetic property chart for a common ferrite magnet. We want to operate
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a magnet at the knee of the curve where the energy product is at its maximum.
This minimizes the amount of magnet material required to perform the task.
From the figure, we can see that the ratio of Bm to Hm should be about 1.2 (ignor-
ing the minus sign). This is the value of the load line Ll that is required for opti-
mum magnet usage. This value will differ for each magnet type, but otherwise the
rest of the analysis in this section would be identical for all magnet types. From
Eq.(2.3.12) and Eq.(2.3.13) we know that

(2.3.14)

and from this it follows directly that

(2.3.15)

This equation determines the aspect ratio of the magnet. By once again using
Eq.(2.3.14) we can readily determine the area of the magnet as

(2.3.16)

thus completing the design.
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This approach will yield a good estimate of the magnet required for a particu-
lar design, but it is an estimate that almost always yields a magnet that is too small.
Several factors enter into the problems which confound the design:

• The first discrepancy between theory and an actual design is that
there can be a great deal of leakage flux, which depends greatly on the
geometry of the motor design. Flux leakage can be as high as 20% or
more (in a poorly designed motor) or as low as 5% in a well-designed
structure. Larger magnet volumes, like ceramic, do not lend them-
selves to motor structures which are very efficient yielding typically
10% – 20% loss. Smaller magnet volumes, like Neodymium, and rare
earth magnets, can be made to be quite efficient on the order of 5%-
10% loss.

• There will also be some potential loss in the motor structure material
that depends on the actual material selected.

• The magnetic material of the motor is not linear and its loss depends
on the details of the flux flow pattern.

The detailed design of a motor structure can involve a numerical calculation of
the actual flux patterns and the leakage flux. In our experience, these calculations
are only warranted in cases where one is concerned with saving a few percent on
the cost of the motor structure. For very high volume production, this can be
worthwhile but for mid to low volume production simply over-designing the
motor structure will yield more than satisfactory results. Typical numerical analy-
sis of a well-designed structure will yield up to 10% improvements in material
costs depending on the level of optimization of the original design.

Following a few simple rules of thumb one can get very close to the required
design:

• There will always be flux loss, a value of 5%-20% (as given above)
should be expected so design for more gap flux than you need.

• Minimize saturation points. In a moving coil structure this is almost
always at the base of the pole piece where it joins the backplate. Satu-
ration causes a lower amount of flux in the gap. It is good to saturate
the gap at the inner radius as this is the point where the greatest flux
should occur and saturation at this point minimizes flux modulation
effects from the moving coil.

• Make the gap as symmetric as possible with cone excursion. This
minimizes distortion and reduces cone displacement out of the gap at
high output levels. 

• Contrary to popular marketing of loudspeakers, the mass of the mag-
net is unimportant; it’s the flux in the gap that counts. 

In conclusion, the design of the motor structure need not be a complicated
task. There are very few sound quality issues associated with the design of the
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motor structure as long as one abides by the rules above. The principle design
issues are mostly cosmetic and financial.

2.4 The Electrostat ic  Motor4

The electrostatic motor is just about as old as the moving coil. We will develop
its T-matrix forms in this chapter and use it in a later chapter when we talk about
microphones. Another common usage of this motor is for loudspeakers. We will
not get into that application, as it is not really that common. A direct comparison
between the moving coil and the electrostatic motors would show the electro-
static to be less efficient. It is also inherently nonlinear and has a relatively low
excursion capability. The interested reader could easily show this to themselves
using the techniques developed at the end of this chapter.

In the electrostatic motor there is a diaphragm, which is free to move, usually
a stretched membrane, and a fixed backplate which make up a capacitor. (As a
side note, the modal characteristics of the stretched membrane of an electrostatic
loudspeaker are the reason that we will not discuss it here. To do so would require
an excursion into the field of mechanical vibrations. We have chosen not to dis-
cuss this topic in this text because it is already well covered in other texts. Leaving
out the mechanical vibrations from a discussion of electrostatic loudspeakers
would do it a serious injustice.)

The membrane and backplate capacitor are charged with an external voltage
E. This polarizing voltage can come from any source but needs to be extremely
clean. Typical voltages range from several hundreds to several thousand volts.
Either the diaphragm or the backplate is usually grounded and the other plate is
coupled to ground through a very large resistance. This motor can be used in two
ways: as a receiver, or a source. In the source case, the polarizing voltage is modu-
lated and the variable force on the plate causes the membrane diaphragm to
move. In the receiver case the moving diaphragm causes a current to flow
through the resistor load because the voltage is fixed and the capacitance changes.
Since we will be using this motor in its receiver configuration, we will derive it in
that form. However, simply taking its inverse will put it in the form for use as a
source.

In the receiver mode the following equations must hold

(2.4.17)

Q = total charge on capacitor plates
E = polarizing voltage
C0 = diaphragm capacitance

4. See Hunt, Electroacoustics
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 As the diaphragm moves the capacitance changes and since the voltage is con-
stant the charge on the plates must vary. This leads to the relation

(2.4.18)

C0′ (t) = time dependent capacitance
C0 = static capacitance
Ce(t) = variable capacitance
ε0 = permittivity of air, 
S = effective area of backplate (assuming the backplate < diaphragm)
d = air gap
x(t) = diaphragm displacement

For small displacements this equation can be “linearized” (the source of the
inherent nonlinearity) as

(2.4.19)

We will need the time dependent form of Eq.(2.4.17)

(2.4.20)
q0 = static charge on plates
q(t) = dynamic charge on plates
E0 = polarizing voltage
e(t) = dynamic voltage across plates

So that

(2.4.21)

The last term is not linear and it is small (another nonlinearity) so we will ignore
it. Taking the time derivative of this equation results in

(2.4.22)

where we should recognize the first of the two equations that we need for our T-
matrix. Obviously the other one must involve the force.

We know that the force between the plates of our capacitor must be the
mechanical impedance times the velocity (in the frequency domain) plus a vari-
able force due to the changing charge on the plates. This can readily be seen as

(2.4.23)

zm = mechanical impedance of the diaphragm
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(We have taken the liberty of mixing domains here since there really is no such
thing as a time domain impedance.) Taking the time derivative gives us the second
equation (in the frequency domain)

(2.4.24)

We can now write the coupling T-matrix, but we need to note one other thing.
Since our input is a pressure and our output an electric signal we will want to
reverse our usual definitions as follows

(2.4.25)

We can immediately separate out the electrical capacitance of the diaphragm as

(2.4.26)

and then separate off the mechanical impedance as

(2.4.27)

There is yet another way to view this matrix combination, as shown below.

(2.4.28)

This equation has, perhaps, a more elegant look. We can use either form so long
as we remember to add the negative compliance which results from the electrody-
namic coupling to the diaphragm’s mechanical impedance.

2.5 The Piezoelectr ic  Motor Structure5 ,6

The final motor structure that we will consider, only briefly, is the piezoelec-
tric motor. In general, these motors can be extremely complex owing to the fact

5. See Kinsler, Fundamentals of Acoustics
6.  See Morse, Vibration and Sound
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that the complete solution involves a 3X 3 tensor. If we limit ourselves to the situ-
ation shown in Fig.2-6, then both Kinsler, et al. and Morse show equations that
eventually lead to identical results. This derivation follows a mixture of the two.

From Kinsler and Frey

(2.5.29)

and

(2.5.30)

= the charge density on the x faces,
= the strain in the direction of the force,

d12, s22 = material properties.
Converting these equations into ones in current and velocity yields

(2.5.31)

Rewriting in standard form we get 

(2.5.32)
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(2.5.33)

The above equation shows the equivalent circuit to be an input capacitor C0 in
parallel with a transformer of turns ratio τ, followed by a series capacitor Cp. For
our purposes, the T-matrix shown in Eq.(2.5.32) is more convenient since the
capacitive elements are an integral part of the motor and should not be consid-
ered as separate elements.

Many forms for a piezoelectric motor are possible and the one given above is
just an example of how one puts a given set of equations into the form of a T-
matrix. Typical values for the material constants are given by Kinsler for a quartz
crystal. These are the values that are used in the examples here.

2.6 A Simply Supported Piston
The T-matrix for a simply supported piston, like a loudspeaker cone when it

moves as a rigid body, is very simple. The impedance of this device can be derived
from Newton’s Equation written in the frequency domain and in terms of veloc-
ity

(2.6.34)

Mm = the mechanical mass
Rm = the mechanical resistance
Cm = the mechanical compliance

The subscript m refers to mechanical elements. 
The impedance function then becomes

(2.6.35)

And finally the T-matrix is

(2.6.36)
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2.7 A Simple Driven Piston Example
In order to show the power of the above formulations and the T-matrix

approach, we will consider a variation of the problem shown in section 1.10. We
will derive the motion of the diaphragm as a function of frequency for a constant
one volt input for the three different motor structures.

The matrices, when laid out, are

(2.7.37)

We will look at two cases. First, we will assume that there are no additional forces
acting on the cone for it is in a vacuum, and, second, that a large load, a heavy
fluid like water, is placed on the piston.

Multiplying out the matrices for the moving coil case, we obtain

(2.7.38)

Further multiplying out this equation and looking only at the term for the voltage
(the top equation) we will get

(2.7.39)

from which we can see that

(2.7.40)

 = an external mechanical impedance. 

Similar equations can be developed for the variable reluctance motor as well as
the piezoelectric motor structures. This exercise is left for the reader.

The two graphs shown in Fig.2-7 are curves of the pressure responses (arbi-
trary scale) for the moving coil (MC) and variable reluctance (VR) motor struc-
tures driving a typical diaphragm ( ωs≈100 s-1, mass=15g). The moving coil
is 8 Ω with a Bl = 5.0 Nt./A. The variable reluctance has a gap flux Bg of .8Tesla
(8000Gauss) and a magnetic gap area of .01m². The voltage drive is one volt and
the current drive is 12 mA.

11( ) 1 ( )
( ) 0 1 ( )

0 1

m me
m

i M RE z Motor F
i C

I Structure V
ωω ω

ω
ω ω

 + +        =                 

1

( )
( ) ( )1

1

e m m
me

in

m m
m

R i M R
i CR

BlE FBl Bl
I V

i M R
i C

Bl Bl

ω
ω

ω
ω ω

ω
ω

  
+ +  

  +    
=    

    + +
 
   

1( ) ( )e e
in m m

m

R R
E F i M R Bl V

Bl Bl i C
ω ω ω

ω

  
= + + + +     

2
( )

1( )

in

e e m m
m

E Bl
V

R Z R i M R Bl
i C

ω
ω ω

ω

=
 

+ + + + 
 

)(
)()(

ω
ωω

V
FZ =



40  -   AUD IO TR AN SD UC E RS

Figure 2-7 -   Moving coil and variable reluctance motor structures driving a 
mechanical load with voltage (top) and current (bottom) drives
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The moving coil is clearly the better choice for the lightly loaded condition for
either of the source types. However, at higher loads the variable reluctance device
looks attractive with either source. The variable reluctance motor is independent
of the source configuration within the frequency range shown. Air loads are very
small under most circumstances, indicating the reason for the predominance of
the moving coil motor structure in the design of loudspeakers. The piezoelectric
motor is six orders of magnitude below the curves shown above. It is not even
worth considering as far as efficiency is concerned, at least not for theses loads in
this frequency range.

There always seems to be a new concept in motor structures, but seldom have
they made so much as a dent in the usage of the moving coil. In any event, the
techniques shown in this section can always be used to determine the effective-
ness of any new motor concept in any configuration.

2.8 Summary
We have seen how the T-matrix approach is very effective in analyzing a wide

variety of motor structures and we will continue to see its usefulness throughout
this text. The output (displacement, velocity and pressure, or voltage and current)
for almost any form of motor and cone assembly whether driving a fluid or being
driven by it, under any type of load and driven with any type of source can be eas-
ily assessed with these techniques. Once we know how to convert a diaphragm
velocity into a sound field, or visa-versa, the problem of converting between elec-
trical signals and sound will be done. When we consider the enclosure problem
using the same T-matrix formulation that we have seen here, we will see that it is
just as effective a technique in that situation. The wide variety of enclosure types
in common usage will make the T-matrix approach even more appealing. And
finally, this approach is a virtual requirement for the accurate calculation of
waveguide characteristics.

The T-matrix approach is particularly well suited to the problem of describing
the motor of a transducer. Any form of energy conversion (motor) can be defined
in a straightforward manner. These components can then be dropped into a
mechanical structure in a very efficient manner to yield and analysis of virtually
any type of transducer.


