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A C O U S T I C S

WA V E  M O T I O N  I N  A  F L U I D  M E D I A

3.1 The Wave Equation1

The fundamental equation of acoustics is the Helmholtz Equation or the Wave
Equation. This equation is a derivative of the much more general, but nonlinear
Navier-Stokes equation for fluids. The Wave Equation can be derived from the
Navier-Stokes equation by assuming that the medium is linear and retaining only
first order terms linear in pressure. If the acoustic medium is linear then waves of
different frequencies will not interact with one another, i.e. superposition holds.
The assumption of linearity of the medium is generally accurate for audio acous-
tics, except in some specific circumstances, which will be discussed later. Assuming
linearity in the transducer itself is not at all accurate, but fortunately for us we need
only require the medium to be linear. The medium of air only deviates significantly
from this linear assumption at sound pressure levels (SPL) of about  2.0Nt/m² or
above 140dB (SPL). This is a substantial sound level that is seldom encountered in
a free field and, hopefully, never at the receiver – the ear. However, it can be
encountered in small spaces within the transducer itself.

The Wave Equation can be substantially simplified by the use of complex nota-
tion. When a complex exponential is assumed for the time dependence 

(3.1.1)
and we insert this form into the Wave Equation,

(3.1.2)

we get a second order partial differential equation where ∆² is the Laplacian opera-
tor. The new equation, which is the simpler Helmholtz Equation

(3.1.3)

k = ω /c the wavenumber in m-¹
c = the speed of sound in the medium in ms-¹

1. See Morse,  Methods of Theoretical Physics, Vibration and Sound or Theoretical Acous-
tics
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Eq.(3.1.3) will form the basis of all our discussions in this chapter. For conve-
nience we will usually drop any specific reference to either the time dependence t
or the frequency dependence ω as they will be assumed. For linear solutions this
is not a problem since an arbitrary solutions in frequency can be built up of a sum
of solutions at a particular frequency, as we saw in Chap.1. Dropping these com-
plex dependencies greatly simplifies the writing, although we must be careful to
always remember their continuous presence.

The operator

(3.1.4)

is the Laplacian, shown here in the familiar Rectangular coordinate system. It is
different in every coordinate system.

The Helmholtz Equation describes a scalar field in the scalar quantity Ψ, the
velocity potential. It is called the velocity potential since the field velocity is its
negative gradient. It has no physical significance but is a convenient quantity for
us to use since either of the quantities of interest to us, pressure and particle
velocity, can be derived from it directly.

The equations for the pressure p and the velocity v are
(3.1.5)

from which it follows that

(3.1.6)
ρ = the density of the medium in kg / m.

The quantities c and ρ both vary with temperature, static pressure and humidity
(among other things), but these variations are usually negligible. (Although we will
see that in room acoustics these variations, however small, have a profound
effect.)

The appearance of the Helmholtz Equation can be quite deceptive. Its solu-
tion in the general case would take an entire volume or more to thoroughly inves-
tigate. We will investigate numerous solutions of the Wave Equation, but in only a
few different coordinate systems, and then with only a few specific boundary con-
ditions.

3.2 The Helmholtz  Equation in Rectangular Coordinates  2

Solutions in Rectangular Coordinates are relatively easy compared to those in
other coordinate systems. Unfortunately they are not a great deal of use to us in
this text. Still, we can learn a significant amount about the general approach to the
solution of the Helmholtz Equation in other coordinate systems by investigating
the simpler solutions in Rectangular Coordinates. 

2.  See Morse, Vibration and Sound and Methods of Theoretical Physics.
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In Rectangular Coordinates the Helmholtz Equation is

(3.2.7)

Let us assume a solution that is the product of three separate solutions:
(3.2.8)

We will find that, in general, the solutions to almost any problem starts with an
assumed solution which is then plugged back into the original equations in order
to find out how well it fits. So assuming the general solution to be the product of
three separate solutions in each of the three spatial coordinates is a reasonable
place to start. Hindsight is also helpful.

Using Eq.(3.2.8) in Eq.(3.2.7) results in

(3.2.9)

which we can rewrite as

(3.2.10)

by simply rearranging the terms.
For both sides of this equation to hold they must both be equal to a common

constant. This last statement is a powerful argument, the validity of which is cru-
cial to all of the following discussions. Its legitimacy is apparent by thinking about
two functions, of different variables, varying independently, but yet still being
equal. We will call this value the separation constant. 

Setting both sides of Eq.(3.2.10) equal to the common constant kx² we will
obtain

(3.2.11)

from which it follows that

(3.2.12)

Following along with this same process, once again, we find a complete set of
separated equations, each one conveniently in a single dependent variable, even
though coupled together by a common constant. This set is
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(3.2.13)

. 
The wavenumber k is now in a form that is quite instructive, namely that it is

actually a vector with elements kx, ky, and kz in the x, y and z directions, respec-
tively. This wavenumber vector concept, which we will call k-space, will become
handy to us in the future.

The three separated equations are, conveniently, all identical and they are
known to have simple, well known solutions

(3.2.14)

where, as we has stated, we have ignored the time factor. These equations are
often written in the equivalent form of sines and cosines.

Another useful form of this solution is to write

(3.2.15)
where we have written all of the spatial coordinates simply as a vector r to the
spatial point and the separation constants as a vector k in k-space. For Rectangu-
lar Coordinates this formulation and concept is hardly necessary, although
instructive, for we can see that the general plane wave solution is made up of wave
components in the three orthogonal directions of the coordinate system. This will
hold true for any coordinate system which is orthogonal. In Rectangular Coordi-
nates it is hardly useful, but for more complex coordinate systems it will become
very useful.

An example of the utility of the k-space concept is in the study of the low fre-
quency sound field of a small rectangular room which we will study in far greater
detail in Chap.7. A sound wave propagating at a particular mode ( l, m, n) travels
in a direction of k, given by

(3.2.16)

where the room has dimension Lx by Ly by Lz. This implies that a sound source
which excites only a single mode in such a room does not radiate sound in all
directions, nor does the sound wave propagate freely about the room. The sound
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wave is constrained to move in precise fixed directions as given by the above
equation. A loudspeaker exciting this mode would have propagating sound waves
emitted only in the direction of k. There would be a small direct field from this
source, but otherwise its directivity would be fixed in space by the vector k. The
concept of source directivity, as we will come to know it, does not exist in small
rooms at low frequencies.

3.3 Cylindrical  Coordinates3

In Cylindrical Coordinates we will encounter some significant complications
to our problem, namely, that the solutions are functions that are not as well
known as simple complex exponentials or sines and cosines.

In the Cylindrical coordinate system the Helmholtz Equation is

(3.3.17)

Once again, we will assume that a solution exists which relies on only a single spa-
tial variable

(3.3.18)
Following along lines, identical to the previous example, leads us to three sepa-
rated equations in the three spatial variables, r, θ and z

(3.3.19)

We have already seen the solutions to the last two equations

(3.3.20)
and

(3.3.21)
In Eq.(3.3.20) the separation constant kϕ is not arbitrary, owing to the fact that
the solution in φ must be periodic. Therefore kϕ must be an integer, which we will
call m. 

The separation constant kz remains completely arbitrary and can take on any
value within limits. As we will see, the k-space concept as a continuum is most
appropriate for this type of continuous wavenumber.

3.  Morse, Methods of Theoretical Physics, and Theoretical Acoustics
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Given the above restriction on the separation constants, the equation for R(r)
in Eq.(3.3.19) becomes

(3.3.22)

This equation, known as Bessel’s equation, and has been thoroughly studied4. By
assuming a solution as a power series in kr and inserting it into this equation we
would find that a convergent series would result. This series has come to be know
as a Bessel Function. 
The solutions to Bessel’s equation are then

(3.3.23)
Jm = are Bessel Functions of order m 

Each value of m exhibits a completely different function, but one which is
orthogonal to all the other functions in m. The first five orders of this function
are shown in Fig.3-1 as a function of the argument kr (shown as x).

From Eq.(3.3.22) we can see that the equation is of second order in r and
therefore must have a second solution, which must be orthogonal to the first. We
can also see that the equation is singular at the origin, and as such, one of the
solutions must also be singular at the origin. The Bessel Functions are not singu-
lar anywhere. The techniques for finding this second solution are generally known

4.  See Morse, Vibration and Sound.
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Figure 3-1 -  Bessel Functions of order m
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but these techniques are beyond the scope of this book. This second set of func-
tions are known as Neumann functions and can be derived directly from the
Bessel Functions. The singularity of these functions at the origin generally limits
their usefulness to problems that do not contain the origin. Some of our prob-
lems are of this class, although many others are not. We must consider each case
separately and decide if we must retain both solutions or not. Both of the solu-
tions of Bessel’s equation are a complete orthogonal set on the interval r =〈0,∞〉
with a weighting function kr. 

The complete solution to Eq.(3.3.22) thus becomes
(3.3.24)

Nm = are Neuman functions of order m.
An alternative set of functions which we will have extensive use for are know as
the Hankel Functions, and are denoted Hm(kr). They are defined as

(3.3.25)

The superscript 2 stands for “of the second kind” the first kind having a plus sign
in the sum. One set represents outgoing waves and the other incoming waves. We
will usually consider only outgoing waves and drop the superscript. These func-
tions have the characteristics of a traveling wave in Cylindrical Coordinates, like
the complex exponential functions in Rectangular Coordinates, the physical val-
ues being the real part.
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The magnitude of the Hankel Function waves is shown in Fig.3-2. The real
part of this function is identical to Fig.3-1. The magnitudes of these waves all
grow to infinity at the origin due to the presence of the Neumann functions. The
higher the order of the function the faster they grow towards the origin, the sin-
gularity in the equation.

As we will see the Bessel Functions will be useful for problems that require
standing wave solutions and the Hankel Functions for problems that have propa-
gating solutions.

A useful fact is that the Bessel Functions are also orthogonal on a finite inter-
val. An example is (one that we will have further use for shortly) when the prob-
lem dictates a two dimensional (kz =0) solution and a boundary condition is given
for R(r) at some finite radius r = a – a circle. If the boundary condition is

 (3.3.26)

then the characteristic functions for this problem (those functions which satisfy
the boundary conditions) are

(3.3.27)

 = the characteristic (eigen) values
such that 

(3.3.28)

The orthogonality integral for this set of Bessel Functions is

(3.3.29)

This integral represents the normalization constants for the set of functions.

3.4 Spherical  Coordinates5

In Spherical Coordinates, the solutions will bear a striking resemblance to
those found in the cylindrical case. In this coordinate system the Helmholtz
Equation is

(3.4.30)

5.  See Morse, Methods of Theoretical Physics
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Once again we will assume that a solution exists which relies on only a single spa-
tial variable

(3.4.31)
Inserting this assumed solution into Eq.(3.4.30) yields the three separated equa-
tions

(3.4.32)

The equation for Φ(φ) is, by now, well known to us. We note that m must be an
integer because of the periodic nature of the φ coordinate. For nearly all cases that
we will encounter in this text m will be zero, i.e. there will be axi-symmetry about
φ .  
The equation for R(r) looks new. However, with a simple change of variables this
equation can be rewritten in a form whose solution we have already developed.
By utilizing a new set of functions, which are based on Bessel Functions, we can
obtain solutions to the radial equation. These new functions are obtained by mul-
tiplying the Bessel Functions by kr-½ (and some other constants) and using new
orders of n+½. These new functions satisfy Eq.(3.4.32) for R(r). They are

(3.4.33)

where we have introduced a new symbol hn(kr) for these new functions. These
functions are called the Spherical Hankel Functions of the second kind of order n. The
spherical solutions are of sufficient importance that they have been allocated their
own name, even though they are a simple derivative of the Bessel Functions. We
will only be concerned with outgoing waves and so we will usually drop the super-
script (2) which plays the same role here as it did for the cylindrical case. Numeri-
cal values and algorithms for these functions are readily available.6,7

The equation inθ is new to us and warrants some discussion. It is usually
solved after transforming variables to µ = cos(θ ) giving us an equation in µ:

6.  see Morse and Ingard, Theoretical Acoustics
7.  see Press, et. al. Numerical Recipes
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(3.4.34)

where we have written these new function as T (µ). Solutions of this equation
turn out to be describable by a finite series in m with order n and degree m. They
are called the Associated Legendre Functions Tnm(µ) where

(3.4.35)

Pn(u) = the Legendre Polynomials of order n. 
These functions are known by many different names including Spherical Har-

monics, surface harmonics and the Laplace Functions. For purposes of our immediate
discussion we will restrict ourselves to the Legendre Polynomials where m =0.
The first few of these functions are

(3.4.36)

Fig.3-3 shows a plot of the Legendre Polynomials in the polar coordinate θ . They
represent a monopole (n =0) a dipole (n =1) and higher order quadrapoles (n >1). 

The Legendre Polynomials are an orthogonal set with

(3.4.37)

Now that we have complete solutions for the individual coordinates in the
spherical case, we can write the general solution as

(3.4.38)

where we have, as usual, dropped the time exponential.

3.5 A Spherical  Example8

The classic example problem in Spherical Coordinates is radiation from a
polar cap. This is a good approximation to a loudspeaker in a box in free space
even though it is not exactly correct. We will see later how to make this problem
more realistic.

8.  see Morse, Vibration and Sound or Theoretical Acoustics
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The boundary condition for this problem is that at the radius of the sphere, a,
we must have a given velocity v0 over a section of the sphere given by |θ | <30°, a
spherical cap. Thus we have

(3.5.39)

We first assume a solution as a finite series of solutions of the type shown in
Eq.(3.4.38), and then apply the boundary conditions to obtain our solution. We
must consider all possible solutions consistent with the separation constants. This
will then determine the values for the unknown coefficients that fit the given
boundary conditions. Proceeding, let the pressure field be

(3.5.40)

The boundary conditions can now be enforced by noting that

(3.5.41)

(recall Eq.(3.1.6)) which results in
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Figure 3-3 -  Polar pattern for the angular modes of order n
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(3.5.42)

Next we us the power of orthogonality by multiplying both sides of this equation
by Pn(µ) and integrating from –1 to 1

(3.5.43)

Since the Legendre Polynomials are orthogonal we obtain (using Eq.(3.4.37),
the orthogonality relationships for these polynomials)

(3.5.44)

and finally

(3.5.45)

                       

                     
We can now insert these values for An back into Eq.(3.5.40) to get the final result

(3.5.46)

Fig.3-4 shows the polar response for various values of ka. (This plot is nor-
malized to the axial response.) As the frequency goes up (increasing ka) the polar
response narrows until a value of about ka = 6, at which point it begins to take on
a pattern which has a more consistent directional response. This is the principle
behind the concept of Constant Directivity (CD) – which says that at sufficiently
high frequencies the sound radiates directly from the sources velocity profile, i.e.
the angular variation of the radiated sound is the same as the velocity distribution
on the sphere. This is asymptotically true at high frequencies, but the next figure
shows that this is not really true for more practical frequencies where the wave-
lengths are not infinitesimally small. The frequency must be fairly high for the
polar response to even begin to approach CD at the angle of the wavefront.

Shown in Fig.3-5 is the same data as that shown in the figure above only in a
different format. We will use this new format almost exclusively in later chapters,
which is why we have introduced it. It is not the common format for presenting
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polar data, but this format is able to present the entire frequency variation of the
polar response in one plane. The ka or frequency value is along the horizontal
axis and the angle the vertical axis. The contours are usually at 6 dB intervals,
although sometimes they are at 3 or 12 dB intervals. When the plot shows a trans-
parent portion (the grid shows through, then the data is above the maximum
level – usually 0dB.

In this figure, we can more easily see CD occurring at about 30º, but not until
we are substantially above ka =10.0. Note that the directivity first narrows until
about ka = 10.0, and then it begins to widen asymptotically approaching 30º at
about -3dB.

If we examine the pressure at the surface of the sphere r = a in Eq.(3.5.46) we
can see that the only terms in k (the frequency variable) are the Hankel Functions.
If we divide Eq.(3.5.46) by an expression for the velocity we will obtain an equa-
tion containing only those terms which determine the frequency dependence of
the radiation response. When normalized to ρ c, these terms are called the modal
impedances zm(ka)

 . (3.5.47)

The modal impedances are shown in Fig.3-6. These figures exhibit an impor-
tant characteristic of sound radiation that we will find to be true of all radiation
problems and that is mode cutoff. Note how each successive mode has a higher
cutoff point below which it does not radiate sound to any appreciable degree.
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Figure 3-4 -  Spherical radiation pattern for ka = 1,4,7&10
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Each impedance curve tends to peak at a ka value of n +1, where n is the order of
the mode. The mass loading also increases with order but tends to peak at n. At
low frequencies only the lowest order mode can contribute any of significant
sound to the radiation. No matter how much we try to manipulate the velocity of
the source, only that portion of the velocity that excites the lowest order mode
will contribute to the sound radiation. We can see from this that at low frequen-
cies, there is nothing that we can do to affect the polar radiation pattern, except
null out the zero mode and utilize only higher order modes. But in so doing we
must accept the extremely low radiation efficiency that will result. This character-
istic is proof of something that we already knew to be true, but perhaps had never
known exactly why. 

Above about ka =1, we can begin to affect the polar pattern to a limited
degree. We will show a use for this effect in later chapters. These curves also show
the degree to which the sound radiation diminishes at ever lower frequencies.

Finally, the modal radiation impedances are useful for calculating another
important function. By simply integrating the angular terms over the surface of
the spherical cap we can find a weighted sum of the modal impedance contribu-
tions to get the total radiation impedance for the source

(3.5.48)

Figure 3-5 -  Polar response plotted as a contour plot of ka value versus angle
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The results of this calculation are shown below. When multiplied by the imped-
ance of the medium ρ c and divided by the area this impedance is the actual
mechanical impedance seen by the diaphragm.

There is an interesting “trick” that can be performed with the spherical modal
calculations. Since all odd modes have zero slope at µ =0 (θ =90°), by excluding
all the even modes we can force a boundary condition of zero velocity in a plane
through the sphere perpendicular to the axis of the source. In other words, the
sphere is now a hemisphere placed against the wall. Fig.3-8 shows a comparison
between the axial response for the free sphere and the hemisphere mounted
against a wall. The wall reflections cause a fairly large variation in the response as
they alternately add and subtract from the direct sound radiation due to phase
delay effects. Fig.3-9 shows the polar map for this example. Comparing this map
with the same portion of Fig.3-5 shows that placing the source against the wall
has a lessor effect on the polar response except at low ka. The axial response is
affected to a greater degree because the reflections are all in the same phase along
this axis. If one must put a source against a wall, it is better to do so with the
source at an angle to the wall than normal to it.

The impedance of this source could be calculated just as we did previously, but
only considering the odd modes in the calculation. This exercise is left to the
reader. By now the reader should also be able to describe the system (boundary
conditions) that would result by taking only every fourth mode; or every sixth
mode, etc. Another interesting exercise.
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Figure 3-6 -  Real and imaginary parts of the modal impedances for n= 0…6
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Figure 3-7 -   Showing the calculated radiation impedance for a spherical cap
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3.6 A Cylindrical  Example 

We will now show an example of sound
radiation calculations in Cylindrical Coordi-
nates. This will give us an opportunity to dis-
cuss a new technique for sound radiation
problems. Consider the source shown in the
figure below. This is an infinite cylinder with
a source placed in its shell. The cylinder has a
radius a and the source is defined as

(3.6.49)

There are two ways to think about this
problem, and to a first approximation the
solutions are identical. First, we can think of
this problem as a source placed on the shell
of a cylinder such that it vibrates radially out-
wards. In reality it would be difficult to build
such a source, at least not such that the
velocity were uniform across the face. A

Figure 3-9 -  Polar map for hemisphere against a wall
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bending source could be made to approximate this type of source, but it would
likely have a diminished amplitude at the edges.

  Another way to think about this source is to consider a line source at the cen-
ter of the cylinder such that at the walls, where the hole or aperture is, the velocity
is approximately uniform across the aperture. To a first order this is possible. To
be exactly correct we would have to consider the effect of diffraction on the
wavefront within the aperture and the effect that this diffraction would have on
the velocity amplitude of the wave in the aperture. The diffraction in the aperture
would act to alter the velocity distribution in the aperture so that it would not be
uniform, as we have assumed. It turns out that this modification of the aperture
velocity takes place principally in a frequency range where the wavelength is
approximately the same as the aperture dimensions. Outside of this range this
perturbation is negligible. Even in this range this effect is not a dominant one and
ignoring it will only have a small (second order) effect on our results. We will take
the approximate path and assume that the velocity is uniform in the aperture.

The problem shown above is of great interest to designers of the current
genre of high performance sound reinforcement systems. These systems are
being designed as large line arrays because of certain desirable features of these
types of arrays. For the most part the theory of these systems is based on solu-
tions for an infinite line array, not for a finite one. We will see that the two solu-
tions are really quite different.

Since we have a know a solution for waves in the Cylindrical Coordinate sys-
tem we can define the solution in terms of this set of these cylindrical waves.
From previous sections, we know that the complete solution to an outgoing wave
in this coordinate system is

 (3.6.50)

We have made two simplifications in this equation. First we have assumed that
the source will be symmetric in θ and reduced the Fourier Series in θ to a single
cosine function in m (no sine function), and second, the exponential term in kz
represents waves in both z directions so long as we don’t restrict the sign of kz.
We must allow for all possible (symmetric) angular solutions and since the solu-
tions in this coordinate are a discrete set in the integer m, this becomes an infinite
sum. The solutions in the z direction have a separation constant kz given by
Eq.(3.6.51). The allowed values of kz constitute a continuum in k-space and con-
sequently the summation over all possible solutions in this coordinate becomes an
integral in kz. This integral is an example of the k-space formalism for sound radi-
ation. The coefficients Bm(kz) consist of an indexed set of continuous functions
which it is now our task to determine.

We have also excluded the second solution for the radial coordinate since we
are interested only in waves that propagate outward from the source. We must
also remember that kr is not completely arbitrary since

( , , ) cos( ) ( ) ( ) zi k z
m z m r z

m

p r z m B k H k r e dkθ θ
∞

−∞
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(3.6.51)

We are now in a position to apply the boundary conditions by setting Eq.(3.6.50)
equal to the specified surface velocity

(3.6.52)

which results in

(3.6.53)

where the prime on the radial function means that we must take its derivative
with-respect-to (wrt) its argument (we must not forget to take the derivative of
the argument wrt r which is where the kr comes from). The functions f (θ ) and
f (z) are simply the angular and vertical velocity functions of Eq.(3.6.49), respec-
tively.

Multiplying both sides of the above equation by cos(nθ ) e-ikzz and then inte-
grating over θ  from θ =-π to π and z =-∞ to ∞ will yield

(3.6.54)

By the features of orthogonality (without which we are virtually helpless), and the
Fourier Transform in k-space, which in this case simply returns the original func-
tion (the double integral is a transform and its inverse). 

Eq.(3.6.54) simplifies to

(3.6.55)

from which we can immediately determine the coefficients Bm(kz) as

(3.6.56)

where

(3.6.57)
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(3.6.58)

We should immediately recognize these as a Fourier Series for the discreteθ
coefficients and a Fourier Transform for the continuous kz coefficients. The last
step in this calculation is to reinsert Eq.(3.6.56) into Eq.(3.6.50)

(3.6.59)

Now using Eq.(3.6.51) we get the daunting equation

(3.6.60)

Analytical solutions of this equation are not possible, but there are still ways that
we can proceed. The most direct way is to use the approximate method of inte-
gration know as the method of stationary phase, which is similar to other approx-
imate methods of integration (steepest decent, saddle point integration, etc.). This
subject as a whole is beyond the scope of what we are interested here, but we will
summarize the pertinent results.

The method of stationary phase states: for some complex integral I(z)

(3.6.61)

where

This method can be used on Eq.(3.6.60) if we consider only the far field, i.e.
R → ∞. In this case we must simplify the Hankel Function in the numerator in
order to get a form on which to apply the method. If we let z = R sin ϕ with R
large then

(3.6.62)
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where we have used

To find z0 we set g' (kz) =0

 
to get

Using this result in leads to

(3.6.63)

which after some further simplifications yields

(3.6.64)

This equation is only valid for large R. It has been shown that this result becomes
exact as R→ ∞.

We are now in a position to find the values of the coefficients and look at
some results. Theθ coefficients are easily determined

(3.6.65)

The F (k sin ϕ) coefficients are likewise straightforward to calculate since the Fou-
rier Transform of the Rect(kbsinϕ / 2) function is well known

(3.6.66)

Finally the far field solution can be written as
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(3.6.67)

Fig.3-11 shows the polar pattern in the horizontal plane. The cylinder in this
example is about two feet across (r =.3m) and the source about eight inches
across (20cm). The source is continuous about one meter in total height. The
plots are normalized to the axial response which we will look at in more detail
later. In this figure the modal calculations are not likely to have sufficient content

after about 5 kHz so the results in the higher frequencies may not be correct.
There were 40 modes in this calculation and the Hankel Functions for small argu-
ment, which go to infinity, tend to get unstable at higher mode numbers. Note
that the horizontal response narrows to around ±30º remaining almost constant
at about -6dB. 

Fig.3-12 shows the polar response in the vertical plane. Almost all of the
energy is directed towards the central axis. We have plotted only to 60° since the
results for larger angles fluctuate so rapidly that the plotting algorithm fails. Note
that at higher frequencies the results are suffering from an instability in either the
numerical calculations of the function or the contour plotting routine (which uses
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Figure 3-11 -  Horizontal polar response for a line source on a cylinder
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interpolative smoothing) or both. The interesting thing to note here is that we
might expect this same effect in an actual device, namely that the response has
become hypersensitive to small variations and exhibits an unstable condition like
that shown in the plot. In a real situation the vertical polar response in this regime
could fluctuate with small variations in temperature, air currents, atmospheric
pressure or humidity. Unlike light, the acoustic wave speed can change by rela-
tively large percentages in short distances. This can cause a sort of acoustic shim-
mering similar to the twinkling that we see when we look at the stars, only this
effect occurs on a much smaller scale of wave travel. We will see these same phe-
nomena when we talk about room acoustics in Chap.7.

Finally Fig.3-13 shows the response of this array on axis for a constant accel-
eration array of drivers. The apparent constant directivity does not come without
a cost – namely a continuously falling axial response. This response falloff must
be recovered with some form of gain, but 40dB is a lot of loss to make up.

A calculation of the modal radiation impedances can be obtained from the
previous example by setting the argument of Hankel Function in the numerator
of Eq.(3.6.60) equal to ka, and performing the integrations via other simplifica-
tions. However this would not be constructive in the general case since these
impedances would depend on the vertical arraignment of the source. An easy cal-
culation is to calculate the modal impedance z for a uniform vertical velocity on
the cylinder. In this case, the function F (kz) would become δ (0) and the integra-

Figure 3-12 -  Vertical polar pattern for cylindrical radiator
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tion would be trivial. The modal impedances for this simplified example are
shown in Fig.3-14 for the real and imaginary parts respectively of the first six
modes. 

3.7 The Cylindrical  Near Field
The characteristic of the above line source in the near field are very important

owing to the fact that the near field extends a considerable distance into the
sound field for this type of source. The solution of Eq.(3.6.64) cannot be directly
analyzed for the near field, but we can use another method. 

At this point we need to introduce another technique for sound field calcula-
tions that are based on the Green’s Function. The Green’s Function is the spatial
analog to the impulse response in systems theory. Once we know the pressure at
the observation point r (the output response), due to a point source at point r0 (a
spatial impulse), the result for any source distribution is simply the integral over
all of the point sources that make up the desired source. This result is exactly anal-
ogous to calculating the output of a system for an arbitrary input by using the sys-
tems impulse response. This technique is very powerful, so long as the Green’s
Function is known (which is usually the difficult part). We will use such an
approach here. 
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Figure 3-13 -  Axial frequency response for cylindrical radiator
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The Green’s Functions in infinite space (boundary at ∞) are

Those for the single and three dimensional spaces are quite simple, while the
two dimensional one is not so simple. Solutions of radiation problems involving
boundaries which are not separable, and hence not analytically solvable, can be
obtained by using the three dimensional Green’s Function along with Green’s
Theorem to yield an integral equation over the surface of the radiating object.
This technique can be applied to any shape boundary and is sometimes referred

Dimensions Green’s Function g(x |x0)
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Table 3.1: Green’s Functions
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Figure 3-14 -  Modal radiation impedances for cylindrical radiator
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to as the Boundary Integral Method (BIM). (Although in general the Boundary
Integral Method is more general than applying to sound radiation problems.)
These techniques are also very powerful, and the interested reader is encouraged
to investigate them. They will not be discussed in this text because doing so
would take us far away from our intent, which is a thorough overview of the fun-
damental physics of transducers. Like the FEM, which we discussed in Chap.2,
the BIM is best applied to specific cases where in depth analysis is warranted by
application. BIM solutions are specific to the particular analysis being performed
and generalizations of results are difficult to impossible to obtain, unlike the
modal solutions that we have been studying here.

Looking now at our particular problem we want to use the two dimensional
Green’s Function to look at the near field of our radiating cylinder. When the
source is independent of the axial coordinate z then a simple integral results

(3.7.68)

where the Green’s Function must be one that satisfies the boundary conditions
on the cylinder. This can be accomplished by using an expansion of the Hankel
Function and adding a second expansion which represents the reflection from the
rigid boundary. This equation then has its gradient set equal to zero at the surface
of the cylinder. We would eventually end up with exactly the same equations that
we obtained from the modal expansion result for this case.

On the other hand when we place ourselves in a plane of symmetry (the r-z
plane) then the boundary condition for the Green’s Function is simply twice the
free space Green’s Function when r0 is on the surface and r > r0. There is one
more complication to this problem and that is that the space into which the
source is radiating is expanding, i.e. increasing with r at the rate of 1/√ r. We can
still use the Green’s Function approach so long as we recognize that the two
dimension axi-symmetric problem must have an additional 1/√ r term in it to
account for this coordinate expansion. This extra factor is obvious by considering
that the far-field for any finite source must fall as 1/ r for large r. This is true in
any coordinate system. The Hankel Function for large argument only falls as
1/√ r. 

Using the two dimensional Green’s Function, the equation for radiation in the
r-z plane from an axi-symmetric source which is finite in z then becomes

(3.7.69)

with the variables as shown in Fig.3-15. 
While this is not exactly the calculation that we wanted to do (it has a source

that circumnavigates the cylinder) it will give us a good indication of the near field
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effect for the higher frequencies where the radiation from the rear of the cylinder
to the front becomes negligible. The results therefore become correct as the fre-
quency increases.

Eq.(3.7.69) is easily calculated numerically. The calculation of the sound field
on axis as a function of distance from the source is shown in Fig.3-16 The solid
lines at the bottom of the graph show the -6 and -12 dB/octave slopes indicating
that the field falls off initially at -6 dB/octave, but changes to -12 dB/octave at a
distance from the source that moves out with higher frequency. The region where
the falloff is slower is know as the near field. The near field extends out to
approximately

 m.
a = height of the line array

We can also see that within the near field the frequency response is highly irregu-
lar.

Another way of viewing the near field is shown in Fig.3-17. This figure shows
the response for a constant velocity source (not the usual situation; usually the
source velocity falls and so this response would fall like that shown in the figure
below). Here we can see that the frequency response for the cylindrical source is
changing with the distance from the source in a highly complex manner. 
There is no hope of equalizing this response to flat at all locations. Generally
speaking this characteristic – changing frequency response with distance - is true
of the near field of any source. It is for this reason that the near field is not usually
a good place for a listener.
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Figure 3-16 -  Nearfield axial pressure for a line array
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Figure 3-17 -  Axial frequency response at various distances from the source



70  -   AUD IO TR AN SD UC E RS

3.8 Summary
This chapter has shown the basic acoustical equations for sound radiation in a

few coordinate systems. Several examples were shown which typify the radiation
characteristics of audio frequency transducers. In the next several chapters, we
will look at more specialized sound radiators and introduce some new techniques
for handling calculations in an efficient manner. Almost invariably these tech-
niques will rely on the modal description of the sound field that we have studied
in this chapter.


