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C O N T R O L L I N G  S O U N D  R A D I A T I O N

                                                                                                                         
We have seen in past chapters that the radiation of sound from typical trans-

ducers is basically a fixed quantity. There appears to be little that we can do to
affect the sound radiation response. The size and configuration determines the
radiation pattern with the enclosure playing an important role at the lowest fre-
quencies. If the driver is still radiating above the point where the enclosure is con-
trolling the response then the response is pretty much completely dependent on
the driver size. Little else has much of an effect.

In this chapter, we will study the concept of a waveguide as a directionality con-
trolling device.

6.1 Historical  Notes
It is important to go through the historical development of horn and

waveguide theory in order to understand its evolution the current level of our
understanding. The importance of this review stems from long-standing beliefs
about waveguides and horns that are not in fact correct. Correcting these beliefs
creates extreme limits on their applicability to current issues in their design.

Horns have been around for centuries and we have no idea when or where they
were first used. Horns as musical instruments are certainly centuries old. With the
advent of the phonograph, the horn was found to play a crucial role in amplifying
the sound emitted from the small mechanical motions of the stylus. The horn was
responsible for virtually all of the gain in the system. Its use therefore was princi-
pally one of a loading or impedance matching mechanism required to better match
the high mechanical impedance of the stylus to the very low mechanical imped-
ance of the medium – air. The horns role as an acoustic transformer is central to
the evolution of horn theory.

When one is interested in the loading properties of a conduit, they need only be
concerned with the average distribution of the acoustic variables across the dia-
phragm and hence across the conduit. This is, in fact, the assumption that Webster
made when he derived what is now known as Webster’s Horn Equation

(6.1.1)
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It is commonly thought that this equation applies only to plane waves since Web-
ster used a plane wave assumption in its derivation. However, this equation is far
more broadly applicable than to plane waves alone. It is actually exact for any
geometry where the scale factor of the coordinate of interest is one. The scale fac-
tor is a fundamental parameter of all coordinate systems as shown in Morse1.
(Having a scale factor is a requirement for separability.) The scale factors are
known and can only be calculated for separable coordinate systems. The interest-
ing thing to note is that any coordinate system which has a unity scale factor for
any of its three dimensions is exact in Webster’s formulation. Specifically these
coordinates are:

• all three Cartesian Coordinates
• the axial coordinate in all Cylindrical Coordinate systems (Elliptic,

Parabolic and Circular) 
• the radial coordinate in the Cylindrical coordinate system
• the radial coordinate in Spherical Coordinates
• the radial coordinate in Conical Coordinates

The first two (six coordinates) apply to conduits of constant cross section, which
are not very interesting to us. The useful ones are the three radial coordinates for
the Cylindrical, Spherical, and Conical coordinate systems. It is extremely impor-
tant to note two additional items. First, that there are only three useful coordi-
nates in which Webster’s equation is exact; and second, that all three of these have
wave propagation in the other orthogonal coordinates. The importance of this
last attribute will become clear later on.

If Webster’s Equation is only correct in three useful situations then why is
there so much literature surrounding its use? That is because the equation is still
useful as an approximation to any conduit of varying cross section. In nearly all of
the common cases of the application of Webster’s equation it is used as an
approximation to the actual wave propagation in a flared conduit. There has also
been a great deal of literature written about the application of Webster’s equation
to the evaluation of these approximate solutions. Almost nothing has been writ-
ten about when these approximations are “good” approximations and when we
should be suspect of their validity. 

The only place where we have seen such a discussion is, once again, in Morse2

where they state:
Both pressure and fluid velocity obey this modified Wave Equation, which
approximately takes into account the variation of cross sectional size with x.
The equation is a good approximation as long as the magnitude of the rate of
change of  with x is much smaller than unity (as long as the tube “flares”
slowly).

1.  See Morse, Methods of Theoretical Physics
2.  See Morse, Methods of Theoretical Physics, pg. 1352

S
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These are very limiting conditions that have been almost universally ignored. Let
us look at what they imply about the development of the well know exponential
horn.

Restating Morse, as applied to an exponential horn, let
(6.1.2)

we can see that, for this example, Webster’s equation is “good” only so long as

(6.1.3)

S0 = the throat area 
m = the flare rate

 The horn contour for this example is shown in Fig.6-1. This figure shows an

exponential horn contour of typical shape and length. In Fig.6-1, we have plotted
the value of Eq.(6.1.3) as a function of the axial distance from the throat. These
figures show that the assumptions for an accurate application of Webster’s Equa-
tion to an exponential horn are clearly violated for a length of the horn beyond
about 15-20cm (Morse says much less than 1.0, but how much less is a matter of
choice. We ascribe here to the use of a value of .5 as being the limit of accuracy,
the assumptions being completely invalid at the value of 1.0.)
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Figure 6-1 -  A typical exponential horn contour
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In Fig.6-1, we have shown a line drawn tangent to the horn contour and origi-
nating at the center of the throat, the acoustic center of the throat’s wavefront. A
simple rule of thumb that we use is that any contour which lies past this point of
tangency cannot be accurately described by Webster’s equation. This rule of
thumb implies a geometrical interpretation of the limitation of Webster’s equa-
tion. The horn equation cannot predict the wavefronts once they are required to
diffract around a point along the device that places the receding boundary in the
shadow zone of the acoustic center of the originating wavefronts. Fig.6-1 shows
that the only exponential horn which could be accurately represented by the Web-
ster equation is extremely short. A horn of this length is of no practical interest.

Further support for our “rule of thumb” comes from considering Huygens’
principle and the construction of Huygen wavefronts. Beyond the point of tan-
gency, wavefronts, if they are to remain perpendicular to the sides of the conduit
(as they must), have to have an apparent acoustic center which is front of the
actual throat of the device. Huygen’s principle allows for un-diffracted wavefronts
to be flatter than those from the acoustic center, but is does not allow for a wave-
front curvature to be less than the radius to the acoustic center. A little thought
will show why this must be true. So stated another way, our rule of thumb
becomes: horn wavefronts with a curvature less than the radius to the throat must
have diffracted somewhere along the trip down the device - the diffraction creat-
ing a new acoustic center from which wavefronts emerge. 

It is further interesting to note that in those cases where Webster’s Equation is
exact, there is never a point on the contour of the horn which is in the shadow
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Figure 6-1 -   Plot of Eq.(6.1.3)
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zone, i.e. our “rule of thumb” is never violated. The overwhelming majority of
work done in horn theory suffers from a serious question of its validity.

How one gets around this problem leads us into another line of reasoning for
which there are two paths. We could join the exponential section of the above
contour to a spherical section continuing out from the point of tangency to the
acoustic center line, thus insuring that our rule of thumb was never violated. This
does in fact work reasonably well, and is in common usage. However, the fact
remains that the exponential section is still only an approximation and we really
don’t know the actual shape of the wavefront at the joining point. As we shall see
later, this is a serious limitation to the joining approach.

Now that we have shown that the horn equation has severe limitations in its
applicability to important problems in waveguides, we will discuss how these lim-
itations might affect the expected results of using it. As we showed in Chap.3, if
we know the wave shape of the wavefront as it crosses through a boundary for
which we have a radiation solution (flat, spherical or cylindrical), then we can
achieve a fairly accurate prediction of the directivity of this source. However, we
must know the précis magnitude and phase of the wavefront at every point in the
aperture in order to do this calculation. From the above discussion, we should
have serious doubts about the ability of Eq.(6.1.1) to give us this information,
except, of course in those limited cases where it is exact. The natural question to
ask is: can we develop an equation or an approach which will allow us to know,
with some certainty, what the magnitude and phase is at every point within the
waveguide? The answer is yes, but the price that we must pay for this precious
knowledge is a substantial increase in the complexity of the equations and their
solution.

6.2 Waveguide Theory3

As we discussed above, the early use of a horn was substantially different than
what we are attempting to develop here. The early need for horns was as an
acoustic loading devices and our interest here is in controlling source directivity.
(Loading essentially became a non-issue with the almost unlimited amplifier
power capability available today.) For this reason, we will adapt the terminology
that a horn is a device which was developed with Webster’s Equation and its
approach to calculation (wherein, only the average wavefront shape and the
acoustic loading is required) and a waveguide is a device whose principal use is to
control the directivity. A waveguides design is along the lines that we will develop
in the following sections, a horns design using Webster’s equation. The acoustic
loading of a waveguide can usually be calculated without much trouble, but not
always. However, since loading is not a central concern for us this limitation is not
significant.

3.  See Geddes “Waveguide Theory” and “Waveguide Theory Revisited”, JAES.
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We know from earlier chapters that the Wave Equation is always accurate so
long as we can apply the proper boundary conditions. This can happen only in
one of a limited set of coordinate systems. Take, as an example, the simple case of
a conduit in a spherical geometry as shown in Fig.6-2. The boundary conditions

here are that the conduit is symmetric in ϕ, and has a θ velocity which is zero at
some θ0. For now we will not worry about the terminations of this conduit along
its axis and simply assume that it is semi-infinite. In other words it has a finite
throat, but a mouth at infinity.

We can use either the full Wave Equation, or Eq.(6.1.1) in this example
because of its simplicity. We have already discussed the horn approach so let’s use
the full Wave Equation as we developed in Chap.3. We know that the following
solution applies in both the Spherical coordinate system and Webster’s Equation.

(6.2.4)

We can immediately see from this solution that there is one aspect to the Wave
Equation approach that is not present in Webster’s approach. That is, we know
from the Wave Equation that the wave number k is a coupling constant to two
other equations in θ and ϕ. We can exclude the coupling to ϕ since there is no ϕ
variation in the boundary conditions, but we cannot simply make the assumption
that there is no variation of the waves in θ . If there is a θ  dependence of the wave-
front at the throat (or any point for that matter) then there will be a θ dependence
in the wave as it is propagates down the device. This is significantly different from
Webster’s approach since Webster’s equation does not allow for any θ depen-
dence. This limitation is actually far more significant than the errors due to the
flare rate that we discussed above.

As an example, consider evaluating a “conical” horn versus a Spherical
waveguide (both are as shown in Fig.6-2) using Webster’s equation and the acous-
tic waveguide approaches respectively. Horn theory yields an impedance at the
throat, but it yields no information about the amplitude and phase of the wave-
front anywhere within the device. The assumption of uniform amplitude across

Figure 6-2 -  A simple horn- 
waveguide exampleθ
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the device means that Webster’s approach predicts the same value at every point
on some (unknown) surface which is orthogonal to the horn boundaries. Of
course we could argue (correct in some cases) that the wavefront must be a spher-
ical section at every point. But what happens if the device is fed at the throat with
a plane wave? There is simply no way to answer this question with the tools avail-
able to us from Webster.

Consider now the alternate waveguide approach. From Sec.3.4 on page 49 we
know that the solutions for the radial coordinate are

(6.2.5)

If the driving wavefront is of a spherical shape, then only a single mode m = 0 will
be excited. In that case we get the same answer for a wave propagating down the
device for either the Horn Equation or the Wave Equation

(6.2.6)

where kr = k, since it is always in the r direction in this case. However, we also
know that there are an infinite number of other possibilities where m ≠ 0. Only
the Wave Equation approach offers up this added flexibility in its application.

When the throat is driven by a wavefront which does not coincide with a
spherical section of the same radius as the throat, then the wavefront can be
expanded into a series of admissible wavefronts prior to propagation down the
device. Since we have solutions for all of these waves, we can develop the final
solution as a sum over these various wave orders. 

Consider a plane wave excitation at the throat. It is well know that a plane
wave can be expanded into an infinite series of spherical waves. This series is

(6.2.7)

a0 = the radius to the throat4

Basically, the Legendre Polynomials form an expansion with the weighting factors
given by the terms to the left of them. Eq.(6.2.7) is applicable to a plane pressure
wave – a scalar function. If we had a planar velocity source at the throat (i.e., a flat
piston) then we would have to match this to the radial and angular velocities at the
throat. This would not actually be too difficult, except that there is yet another
problem with this approach, so we will leave this discussion for later in order to
address the solution to our current problem. 

Unfortunately, the Legendre Polynomials, as shown in Eq.(6.2.7), do not fit
the boundary conditions of our waveguide, that is, they do not have a zero slope

4.  See Morse, Any text
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at the walls of the waveguide, θ =θ0 for all m. The normal Legendre Polynomials
must have a separation constant m which is an integer because of periodicity. The
new functions can no longer require this constant to be an integer. (Why?) Com-
pare the two plots in Fig.6-3. The right side of the plot shows the normal Leg-
endre Polynomials over a 30º arc. The left side shows the Modified Legendre
Polynomials (modified because of the new separation constant νm) that meet the
boundary conditions at the walls of the waveguide. The new polynomials can be
used to expand any axi-symmetric source at the throat – they form a complete
orthogonal set. It is worth noting the similarity of Fig.6-3 with Fig.4-3 on page
73.

Thus far we have seen that by utilizing the full machinery of the Wave Equa-
tion we can match any velocity distribution placed at the throat of a waveguide so
long as this waveguide lies along a coordinate surface of one of the separable
coordinate systems (although we have as yet only looked at a very simple one). We
have also seen that this wavefront matching cannot be accomplished by using
Webster’s horn equation; the machinery to do so just does not exist in that formu-
lation. Of course we could force the throat wavefront to match the lowest order
mode of the horn and then the horn equation would be accurate, exact in fact.
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Figure 6-3 -  Normal Legendre Polynomials (right) for 30º waveguide (left)
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The problem is that there are no sources which have a velocity profile that
matches any of the three geometries which have an exact horn solution!

In order to continue we have a choice of three alternatives:
• accurately use the horn equation with unrealistic sources 
• use approximate solutions for real sources, or 
• obtain exact solutions for realistic sources but restricting ourselves to

the use of a few prescribed geometries (separable coordinate systems)
for which an exact analysis is possible  

The first choice is not of interest to us. The second choice may be workable and
we will investigate that alternative later, but for now we will choose the third
option in order to get exact answers, which we can use later as a comparison to
the approximate solutions. We will also get a better understanding of the nature of
the exact solution.

Returning to the above example, we can see that a planar source at the throat
of a Spherical waveguide will have more than a single mode of propagation due to
the required fitting of this source to the waveguide at the throat. By expanding the
source velocity in a series of modified Legendre Polynomials, we can determine
the contribution of the various modes of the waveguide. We saw an example of
this in Sec.4.5 on page 83 where we expanded a spherical wavefront in terms of a
set of plane aperture modes. We are now doing the reverse, namely, expanding a
plane wave in an aperture in terms of a set of finite angular spherical modes. The
two processes are completely analogous albeit reversed.

Each of the waveguide modes will propagate with a different phase and ampli-
tude which can readily be calculated as

(6.2.8)
νm = the mth Eigenvalue for the waveguide 

The eigenvalues νm need to be determined specifically for each waveguide since
they vary with the angle of the walls. The function  is the same Spherical
Hankel Function (of the second kind – outgoing) that we have seen before except
that now these functions have a non-integer order. The calculation of these func-
tions is not difficult although the details are beyond the scope of this text and
covered elsewhere5.

As we saw in Sec.4.2, the modes radiate (propagate in the current case) with
efficiencies which vary with frequency. Fig.6-4 shows the modal impedances for
the first three modes in a 30º Spherical waveguide. From this figure, we can see
precisely the differences in horn theory and waveguide theory.

Horn theory yields only the solid line shown in this figure, which is exactly the
same as the waveguide calculation for this lowest order mode. Above ka ≈ 2π
(where a is the radius of the waveguide’s throat), the first mode begins to cut-in.

5.  See Zhang, Computation of Special Functions 
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Below this frequency both the horn theory of Webster and waveguide theory will
yield nearly identical results (a small difference is due to the finite imaginary part
of the higher order modes). Above this frequency the first mode (which would be
quite significant for a piston source driving a Spherical waveguide) has an even
greater proportional effect on the wavefront than the zero order mode, and could
hardly be ignored for accurate results. It is in this region (above cut-in of the first
mode) that horn theory has serious shortcomings. Its validity becomes progres-
sively worse as the frequency goes up and even more modes cut-in. Waveguide
theory remains accurate to as high a value as one cares to calculate its modes. This
is a significant difference in accuracy for a large directivity controlling device.

Now that we have seen why waveguide theory is preferable to horn theory for
high frequency directivity controlling devices, we will investigate the various sepa-
rable coordinate systems for which waveguide theory is directly applicable in
order to determine which ones have useful geometries.
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Figure 6-4 -  Real and imaginary parts of the modal impedances for a 30º 
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6.3 Waveguide Geometries
We have already discussed several of the separable coordinate systems, but

below is a table of the complete set of 11 along with the type of source that is
required at the throat for a pure zero order mode.

All of the useful coordinates are radial and all of the mouth apertures are the same
as the throat apertures (not shown). The source apertures are either rectangular or
elliptical (circular being a special case of elliptical). The mouth curvatures (radia-
tion wavefronts) can only be spherical or cylindrical, flat being of little interest.
This last feature is the main reason why we studied the geometries that we did in
Chap. 4. If the apertures are circular then the physical device must be axi-symmet-
ric. The wave propagation need not be axi-symmetric, however. We will not look
into this possibility since it is rather unusual in practice.

It is also possible to combine waveguides to create new devices. For example,
the Prolate Spheroidal (PS) waveguide takes a square cylindrically curved wave-
front at its throat, which is exactly what an Elliptic Cylinder waveguide produces.
A waveguide created as a combination of two waveguides in these two coordinate
systems would take a square flat wavefront as input and produce a square spheri-
cal one.

It is interesting to note that the horn equation is only exact when the input
and output wavefront curvatures remain unchanged. By this we mean that the
location of the center of radius of the wavefront for both the throat and the

Name Coordinate Source
 Aperture

Source
 Curvature

Mouth
 Curvature

Rectangular any rectangle flat flat
Circular Cylinder radial rectangle cylindrical cylindrical
Elliptic Cylinder radial rectangle Flat cylindrical

Parabolic Cylinder none
Spherical radial circular spherical spherical
Conical radial elliptical spherical spherical

Parabolic none
Prolate Spheroidal radial rectangle cylindrical spherical
Oblate Spheroidal radial circular flat spherical

Ellipsoidal radial elliptical flat spherical
Paraboloidal none

Table 6.1: Useful waveguides for Separable Coordinates
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mouth does not move in space. This is exactly what it means to have a unity scale
factor. Unfortunately, geometries that do not have unity scale factors are signifi-
cantly more difficult to analyze – the price that we must pay for the higher accu-
racy of the waveguide approach. We have already looked at a Spherical waveguide
in some detail and now we will investigate a waveguide that is based on the Oblate
Spheroidal (OS) coordinate system in  order to compare and contrast its charac-
teristics with those that we have already studied.

6.4 The Oblate Spheroidal  Waveguide
Proceeding as in the previous sections, the first calculations that we need to do

for an OS waveguide are to determine the wave functions (or Eigenfunctions) in
this coordinate system. Unlike the previous case of the Spherical Wave Equation,
the wave functions for the OS coordinate system are not as readily available. The
unique thing about those coordinate systems that do not have unity scale factors
is; even though the equations separate in the spatial coordinates they remain cou-
pled through the separation constants (the wavenumber or time coordinate). We
have not encountered this complication in any of the problems that we have stud-
ied thus far. The wave functions in both the radial coordinate and the angular
coordinate will be found to depend on a common parameter c=kd, where d is the
inter-focal separation distance (See Fig.1-2 on pg.6). (We must be careful not to
confuse this c (non-italic-bold) with the wave velocity c, of the same letter. The
use of c is historical and the authors do not feel privileged enough to change it.)

The separated Wave Equation in OS Coordinates is

(6.4.9)

and

(6.4.10)

= The angular wave functions of order n (axi-symmetry 
assumed)

= the radial wave functions of order n

= the Eigenvalue for wave functions
For brevity, we have already simplified these equations by assuming axi-symmetric
wave propagation around the waveguide and set the value of m =0 (m is the tradi-
tional constant for the ϕ coordinate and found in most texts on OS and PS wave
functions). All of the published information on the OS wave functions assumes
periodicity in η, which is a different boundary condition than what we require
here. We must apply a zero η velocity (zero gradient) boundary condition at the
walls just as we did in the previous section. Unfortunately, none of the published
tables and subroutines which are readily available can be applied to our problem.
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We will need to revise the techniques used in the published literature and apply
them to the specific boundary conditions for our particular problem. To do this,
we will use a differential equation solution technique known as “shooting.”6

We must first calculate the Eigenvalues λn(c) for the boundary conditions of
our problem. These boundary conditions are

(6.4.11)

and
(6.4.12)

The first condition allows us to only consider functions which are symmetric
about η =1. This means that only even values of ν will be considered. By starting
at η =1 and c = 0 we “shoot” to the point η = cosθ 0, where θ 0 is the design angle
of the waveguide, and enforce a boundary condition on the slope of these func-
tions to be zero at that point. A point of clarification here: the design angle is not
necessarily the “coverage” angle of the device. This issue will be investigated in
more detail later on, but for now, it is important to note that here θ0 refers to the
physical angle of the walls of the waveguide.

The Eigenvalues are known for c=0, from the spherical case, and they are
λn(0)= n (n+1). It is also known that the Eigenvalues will decrease as c increases
at a constant rate. Using these approximations to the Eigenvalues as starting val-
ues, we calculate the exact Eigenvalues for any given value of c by “shooting”
from one boundary to the other. The Eigenvalue is adjusted until a satisfactory
match has been achieved between the boundary conditions at the two end points.
Once we have the Eigenvalue we simply use standard numerical integration to
compile the angular functions Sn(c,η)  (where η = cos θ ). 

Using the Eigenvalues calculated from the above calculations we can also
numerically integrate the radial functions starting at ξ=0 with a slope of zero and
an arbitrary value. It can be shown that this will give the correct form for the
radial functions, but not the correct scaling. The radial functions must be scaled
to match the Spherical Hankel Functions for large kξ, because the magnitudes of
both functions must asymptotically approach each other at large distances from
the source. This process is not too difficult for us to contemplate, but it is a heck
of a lot of work for the computer!

Fig.6-5 shows the Oblate Spheroidal angular wave functions at c =5.0 for a
30º waveguide. These functions are similar to the corresponding wave functions
for a Spherical waveguide due to the relatively low frequency (c value). This simi-
larity between the functions supports our contention that at low frequencies
nearly all shapes of waveguides with similar flare rates act just about the same, the
flare rate being the only aspect of importance – i.e. it sets the location of the low-

6.  See Press, Numerical Recipes, Chap.11 
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est frequency of significant transmission usually called cutoff. Of note in this fig-
ure is the fact that the lowest order mode, which is always independent of angle
for a Spherical waveguide, is beginning to become curved with respect to θ in the
OS waveguide. This means that even if we drive an OS waveguide with a flat pis-
ton, one which perfectly matches the aperture requirements for this waveguide, it
will still generate higher order modes. This effect becomes greater as the fre-
quency increases. 

Fig.6-6 shows the OS coordinate waveguide radial functions for both the real
and imaginary parts for the 30° case at c = 5.0. (The Spherical radial wave func-
tion - Spherical Hankel Function of the second kind – is also shown in these plots
for reference.)

The imaginary parts of the radial wave functions can be very difficult to
develop owing to the near singularity at the origin. The slope of these functions is
known (from the Wronskian as shown below) but the values at the origin, which
yields the proper asymptotic scaling, must be determined. Convergence of these
functions requires a very high degree of accuracy in finding this value at the origin
– about 15 significant digits for the n = 4 mode at c=5.0. This makes it almost
impossible to calculate these functions on a computer using standard iterative
techniques for small values of c at the higher modal orders. The imaginary parts
of the wave functions are usually required in order to calculate the modal radia-
tion impedances. We will see a way around this situation shortly.
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Figure 6-5 -  Angular wave functions for 30° case, c=5.0
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Fig.6-7 shows the angular wave functions for the same waveguide as in the
previous figure but at a value of c=10.0. Here we see that lowest order wave
function is becoming even more curved relative to the flat aperture at the throat.
This means that there will be a significant amount of the n =2 mode present
when this aperture is driven by a flat wavefront. 

Fig.6-8 shows the radial wave functions for the 30° case at c =10.0.  
We can now compute the modal impedances for the radiation modes as fol-

lows.
• Calculate the radial wave functions finding the value required at the

origin to yield the correct asymptotic values at high cξ.
• Note that the Wronskian (a characteristic of all PDE’s) for the OS

Coordinates is

which when evaluated at ξ =0 yields 

• Using this know slope for the radial wave function of the second kind
at the origin, we can use ordinary integration to calculate the function
to some large value of kξ. Once again we compare the magnitude of
this function to that of the Spherical Bessel Functions and iterate the
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Figure 6-7 -  Angular wave functions for 30° OS waveguide at c = 10.0
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Figure 6-8 -  The radial wave functions for a 30º waveguide at c = 10.0
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starting value until the two functions match amplitudes at these
higher radial values.

This is a tremendous amount of work, and the results are known7. We will not
elaborate on the details of these calculations, but we will show the results. Fig.6-9
shows the modal impedances of the 30º waveguide for the first two modes. The
third mode (n = 4) would not appear on this graph's scale. Thus only the first two
modes are of significance for this waveguide over the bandwidth of interest. The
second mode, n =2, enters the picture at a value of c ≈ 7, corresponding to a fre-
quency of, (for a one-inch radius throat)

Above this value, the second order mode will propagate with an equal or
greater amount of influence than the “plane” wave mode, n = 0. In the vicinity of
7 kHz, this waveguide will becoming heavily dependent on the specific configura-
tion of the components that control the wavefront at the throat (phase plug, etc.)
Below about 5 kHz the wavefront geometry at the throat aperture is of little
importance since only the lowest order mode – basically the average of the veloc-

7.  See Geddes, “Acoustic Waveguide Theory Revisited”, JAES
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ity of wavefront across the aperture – will propagate. At low frequencies, the
details of the throat wavefront are irrelevant.

The n = 0 mode in the OS waveguide exhibits an impedance characteristic
which is similar to that for a simple Spherical waveguide or conical horn. We must
be careful in this comparison however, because even though the impedance and
transfer characteristics for the OS waveguide are similar to those for a Spherical
waveguide there are still significant differences. 

Fig.6-10 shows the velocity distribution at the mouth for the 30º waveguide.
(These are the velocity amplitudes normal to the spherical surface defined by the
mouth.) These velocities are dependent on both the frequency and the angle θ .
Note that the velocity gets greater at the center, and that this effect increases rap-
idly with frequency after about c= 7.0 where the second mode is becoming signif-
icant. This velocity distribution calculation at the mouth is one of the most
important distinctions between waveguide theory and horn theory. Waveguide
theory predicts a significant variation of the wavefront amplitudes across the
mouth of the device even when driven by a uniform velocity distribution at the
throat. Horn theory can only predict amplitudes which are independent of angle,
which is clearly incorrect.

Consider now a 45º waveguide. Several things happen when we increase the
waveguide coverage angle. First, the modes cut in at a lower value of c as shown
in Fig.6-11. The second mode is now significant, above about 6 kHz and we can
see that the third mode (n = 4) will be a factor in the passband of the device. The
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Figure 6-10 -   Mouth radial velocity amplitude
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next aspect of the angle increase is that the wave functions vary in θ  to a greater
extent with the larger angle. All of these effects add up to cause an even greater
focusing of the wavefront velocities towards the center of the mouth. We have
not yet shown whether this is good or bad, but it is important to note the effect.

If instead of driving the throat with a wavefront of constant amplitude we
taper this amplitude as shown in Fig.6-12, then the net effect will be to create a
distribution of the velocity at the mouth which has a far more uniform distribu-
tion than one fed with a flat throat velocity distribution8. This is an important
result, for it means that better control of the sound radiation coverage of a
waveguide can be achieved by manipulating the velocity distribution at the throat.
Horn theory could never have predicted this result. Phasing plugs in compression
drivers in common use today are principally designed to create a flat velocity dis-
tribution, because horn theory did not have the sophistication to consider any-
thing else. The implications of this result to the phasing plug design is that, in
essence, it must be part of the waveguide design and not part of the compression
driver design. In the future phasing plugs will certainly be made to better adapt
the device driving the waveguide to the requirements of the waveguide itself. The
phasing plug is a variable in the design problem, not a fixed component.

At this point, it would be a good idea to review the key aspects of the
waveguide theory developed in this chapter:

8.  See Geddes, “Acoustic Waveguide Theory – Revisited”, JAES.

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
R

ea
l( 

z m
)

c

Figure 6-11 -  The  impedances for the 45º waveguide
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• All waveguides (as well as horns) have higher order modes. The fact
that horn theory neither predicts nor is able to deal with this situation
is a serious failing of the theory.

• The wavefront geometry (magnitude and phase distribution) at the
throat of the waveguide is critical to its performance at higher fre-
quencies.

• The loading aspects of nearly all waveguide/horn devices is, for all
practical purposes, the same. The total encompassed solid angle of
radiation is really the only factor influencing the loading.

• Horn theory is adequate only for the low frequency aspects of
waveguides – well below the first mode cut-in and even then it gives
no indication as to what the wavefront shape is at the mouth.

0.0 0.2 0.4 0.6 0.8 1.0
r / a

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Th
ro

at
 V

el
oc

ity
 (n

or
m

al
iz

ed
)

Figure 6-12 -  Proposed throat velocity distribution for a flatter velocity dis-
tribution at the mouth
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6.5 Approximate Numerical  Calculat ions9,10

We will now return to the discussion that we had in Sec.6.2 about an approxi-
mate method for the evaluation of a waveguide which does not conform to a sep-
arable coordinate system and yet retains those features from waveguide theory
that are necessary for acceptable results.

The question is: can we find a way to do an approximate numerical calculation
while still retaining the main features of waveguide theory? Clearly, any new tech-
nique must include the possibility for higher order modes, and it must be able to
predict the actual wavefront distributions at the output (mouth) for any given dis-
tribution at the input (throat).

The way to do this is a modification of the obvious technique of breaking a
waveguide down into a series of finite spherical sections. This is an old technique
but we will add one new feature – we will track all of the modes, including the
higher order ones, as they progress through the elements. We will only develop
and outline this technique because time and space constraints will not allow us to
show an example of its application. To do a thorough study of this technique and
its implications would require far too much space. We will disclose the techniques
and leave it to the reader to develop the applications.

Consider the geometry shown in Fig.6-13. The waveguide is broken into four
sections where each section is a section of a cone in Spherical Coordinates. Calcu-
lation of the first order mode down this waveguide is trivial. It is done by simply
multiplying together the T-matrices for each section to yield the composite matrix
which represents the whole waveguide. The problem with this approach is that it
ignores the presence and propagation of higher order modes within the
waveguide, just as horn theory does.

9. See Mapes-Riordan, “Horn Modeling with Conical and Cylindrical Transmis-
sion line Elements”, JAES.
10. See Putland “Every One-Parameter acoustic Field Obeys Webster’s Horn 
Equation”, JAES.

Figure 6-13 -  A simple waveguide broken into sections and a detail 
of a single junction

section 0
section n

junction n

junction n+1 vn+1(θ )
vn(θ )
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It can be seen in the right hand side of this figure that at each junction
between the sections, the wavefronts are not contiguous – the radius of these
waves must changes between the two sections at each junction. In order for this
wavefront to propagate from one section into the next section we must match the
wavefronts by creating higher order mode modes in the second section. These
higher order modes are required for the wavefronts to match at the junction of
the two sections. We will then have two (or more) modes which must be propa-
gated through each of the following sections. This same situation will occur at
each and every junction, thus continually increasing the higher order mode con-
tent of the wavefront.

The only way for this higher order mode creation to not occur would be for
there to be a wavefront radius source point which did not move in space, as
opposed to one that is changing in each section. It is now readily apparent that
any waveguide which has a changing location of the origin for the wavefront
radius will require the presence of higher order modes to account for this chang-
ing origin. In separable coordinates this changing radius location is exactly what
the coordinate scale factors account for and exactly why the equations have
become so much more complicated. This is another way of looking at the results
that we elaborated on in the previous sections. 

The entire concept of one-parameter (1P) waves is thus shattered by the real-
ization that there can only ever be three waveguides, none of which are of interest
to us, in which there can be true 1P behavior and then only if we feed them with
non-existent sources. All other geometries and source configurations will have
higher order modes no matter how we attempt to minimize them. 

Furthermore, we cannot circumvent this problem by making more sections
and thus a smaller change between sections, resulting in less higher order mode
creation at each junction. The smaller values of the higher order mode compo-
nents are multiplied many more times by the increased number of junctions,
resulting in the exact same result that we have described above. There is simply no
way around the conclusion that, in order to be accurate all waveguide calculations,
we must include the presence of higher order modes or they are seriously flawed.

With this realization in mind we can be thankful that we have developed the
machinery to deal with this complication, namely the T-matrix. By adding two
more dimensions to the T-matrices – for each higher order mode that we want to
calculate – we can accommodate this new complication. We will have larger matri-
ces to deal with (4x 4 for two modes, 6 x 6 for three modes and so on), but we’ll
let the computer deal with that problem.

The T-matrix for the two mode spherical element is easily derived from the
Spherical Wave Equations by using techniques identical to those we used in
Sec.5.2 on page 95, only now we are using two modes in Spherical Coordinates.

Without belaboring the details in the derivation of the T-matrix for this prob-
lem, the results are
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(6.5.13)

pn
m = the modal pressure m at junction n

vn
m= the modal velocity m at junction n

m = mode number
n = section-junction number, section n has junctions n and n+1

and where 

(6.5.14)

= the Spherical Hankel Function of the first kind of order vm 

= the Spherical Hankel Function of the second kind of order 
vm

vm = the Eigenvalue for mode m with the specific angle of section n
h’ = the derivative of the function with respect to its argument
rn = the radius to the entry aperture for section n
rn+1 = the radius to the exit aperture for section n

This is a complex result – one best left to a computer to sort out. In the case
of the lowest order mode it can be simplified significantly and turns out to be

(6.5.15)

From the numerical standpoint it is best to leave the matrix in the form shown
in Eq.(6.5.14) above. The wave functions can be made as a single call to a subrou-
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tine with the correct arguments. In fact only two calls need to be made for each
mode since the subroutines return four values, the values of the functions of the
first and second types along with their derivatives, all of which are required.

The procedure for the application of this technique is to start at the throat,
calculating the modal contributions of the wavefront found at that location in
terms of the angular modes appropriate for that section. These modes are then
propagated to the next junction using the matrices shown above, at which point
the wavefront (the sum of the modal wavefronts) is again expanded in terms of
the angular modes appropriate for the next section. In order to do these calcula-
tions we will need to know the Eigenvalues as a function of the sections angle.

These Eigenvalues can be calculated using the same shooting technique from
the previous section. Then a simple equation is fit to the data. The exact values
(circles) and the fitted equation are both shown in Fig.6-14. The equation for this
fit is 

(6.5.16)

With the eigenvalues known it is an easy matter to generate the “allowed”
angular functions in each section. In order to find the contribution of
each mode at each junction, we must pick a surface on which we can expand both
sets of functions – those in the incoming section into those in the outgoing sec-
tion. The simplest surface on which to do this is a planar one through the junc-
tion.  
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Expanding the velocity function vn+1(θ ), as shown in Fig.6-13, at junction
n+1

(6.5.17)

where  is obtained from Eq.(6.5.13). We can calculate the complex velocity
distribution of a spherical wave onto the flat disk at junction n+1. We need to
slightly modify the values that we found in Sec.4.2 on page 75 to account for the
presence of the higher order modes as

(6.5.18)

υn+1(σ)= the normal velocity function on the planar disk at junction 
n+1

ln= the length from the virtual apex of element n to junction n+1
This equation represents the complex normal velocity distribution across the
waveguide at junction n +1. 

We now need to expand this velocity function into the angular modes of sec-
tion n +1, . The modal velocity contributions at the input to section
n +1, , will then be

(6.5.19)

ηn = cos(θn ) the angle of the nth section
θn = angle of section n+1

The calculation procedure then becomes:
• calculate the modal contributions at the throat v0

m

• propagate these modes to junction 1 using Eq.(6.5.13)
• using Eq.(6.5.17), find the angular velocity v1(θ ) 
• find the normal velocity on the matching disk υ1(σ) from Eq.(6.5.18)
• expand υ1(σ) in terms of the new angular functions in section 1 from

Eq.(6.5.19)
• loop through all sections to end junction – the mouth 

It is interesting to note that the above problem can also be worked in reverse.
That is, we can start with a desired mouth wavefront and work back to the throat
in order to determine what the wavefront should be at that surface in order to
achieve the wavefront that we want at the mouth. It is simply a matter of taking
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the inverse of the matrix from the throat to the mouth. The problem is that we
have not said anything about what the mouth wavefront should be in a particular
situation. We have looked at the issue of analyzing a given device, but not, finding
the optimum device. We will find in later sections that the entire problem can be
worked in reverse, namely, we can specify a desired polar response field, calculate
the required mouth velocity distribution to achieve that field, and finally work
backward to find a throat distribution needed to achieve the desired polar
response. With any luck we could design a phasing/amplitude plug for the driver
to give us the throat velocity that we want.

6.6 Treatment of  Mouth Diffract ion
Up to this point we have not talked about the diffraction of the waveguides

wavefront at the mouth of the device. There will always be a termination of the
waveguide since no waveguide can be of infinite length. We need to understand
how the mouth diffraction will affect the polar response. First, however, we
should understand what our target polar response needs to be in order to know
what mouth velocity we will want. The obvious question “what polar response do
we want?” will not be resolved here; there probably is not a single answer. How-
ever, we will attempt to shed some light on this topic in the chapter on room
acoustics. For now, let’s just simply assume that what we want is a controllable
radiation pattern of some nominal angle, say 30º, since this is the angle that we
have been using in our examples thus far.

It may not be obvious that we can work the polar radiation problem back-
wards. Namely, that given a desired polar response we can use our modal radia-
tion tools in reverse to calculate the velocity distribution required on a flat or
more appropriate to a waveguide, a spherical surface. The process is to expand
the desired field into its fundamental radiation modes and then to calculate (in
reverse) what the amplitude and phase of these modes would have to be at the
source to yield the desired radiation pattern.

Knowing that this reverse problem is a transform, let’s consider some charac-
teristics of the problem that we should expect. The most important is the k-space
equivalent of the well known energy-time trade-off in sound measurements. The
more confined, narrower, the polar response is the broader we should expect the
source velocity to have to be to achieve this result. This implies that since our
source is finite in size, we could easily ask for a polar pattern which cannot be
achieved by the given source. We should expect a gradual rate of change of the
polar response with angle if we want to achieve a smooth velocity distribution
across the mouth of the waveguide and hence across the throat. This last aspect is
analogous to a filter, where a sharper cutoff requires more coefficients in the filter
– in essence, a “high order” filter. High order velocity distributions mean a lot of
radiation modes, but we already know that we will have three or at most four
modes within the waveguide to work with and then only above the frequency of
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the particular mode's cut-in/off. So clearly the best that we could hope to achieve
is a fairly low order polar response, i.e. a gradual change in response with angle.

As an example of the characteristics that we have been talking about, consider
the unrealistic polar response where the pressure is

(6.6.20)

We can calculate the required radiation modes as follows. From Chap.3 we know

(6.6.21)

Vn = the (unknown) modal velocity components at the spherical sur-
face

 a = the spherical radius, basically the length of the waveguide
r = the distance to the measurement surface

from which, using orthogonality for the Legendre Polynomials and a know func-
tion p(r,θ), we will find

(6.6.22)

where

If we are interested only in a far field directivity function, then the denominator
terms in Eq.(6.6.21) constitute a complex constant that is the same for every
mode except for a factor –in, which comes from the large argument approxima-
tion to the Hankel Functions. Any term which is independent of n simply scales
the coefficients. Since we will be looking at normalized directivity functions, these
constants will therefore be unimportant. (If we want to look at the frequency
response at some point then, of course, we will need to retain these terms.)

Finally, we can simplify Eq.(6.6.22) to get
(6.6.23)

Once we have these velocity modes the velocity distribution in the mouth will be

(6.6.24)

Fig.6-15 shows the calculated mouth velocity profile required to achieve the
desired polar pattern.

These results need some explanation. First, they are not stable with different
values of n, the number of modes in the calculations. The velocity profiles
become unstable – wide oscillations, as one adds more and more terms in the
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expansion. This is understandable since the higher order terms are attempting to
fit the sharp discontinuity in the polar response. Then another problem occurs
for the specific case shown here in that these velocity patterns are frequency
dependent. If we are going to “sculpt” a mouth velocity we must pick one of
these curves. We could attempt to match different profiles at different frequen-
cies, but we would quickly find this unworkable. It is reasonable to expect to be
able to create an approximately frequency independent mouth wavefront by the
proper design of a waveguide and its phasing plug (or perhaps a slight frequency
dependence if it follows the natural modal changes that we saw in section 6.4),
but it is unreasonable to assume that we could have a specific frequency depen-
dence in a prescribed manner, such as in the figure above. 

Another issue is the fact that the velocity profile goes all the way around the
sphere, which is unrealizable in practice. Even if it were realizable it is still unde-
sirable. The limits of our velocity control, namely, the mouth size for a 30º device
of a given length, will force us to terminate the velocity profile at this same angle.
The method for terminating the velocity profile is critical to achieving our desired
results.

We can pick a profile from Fig.6-15, terminate it at 30°, and recalculate a new
set of modified Vn’s. We can then use this new set of coefficients to calculate an
expected polar pattern. A polar map of the response for an abruptly terminated
mouth velocity is shown in Fig.6-16. The waveguide here is a ±30° device with a
length of 1.0m. The mouth would be about 1.0m across, in an enclosure (a
sphere) 2.0m in diameter, which is a fairly large device.
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Figure 6-15 -  Velocity magnitude for 30º abrupt polar response
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Once again we need to elaborate on some characteristics of this plot. There
are 50 modes used in the summation for this pressure response. Remember that
these are the modes for the sphere which is much larger than the waveguide or its
mouth. This means that many more modes are required for convergence of the
solution. By changing the number of modes used these plots and noting where
the plots change (i.e. at what frequency) we can estimate the number of modes
required for accurate results at any frequency. The results shown in Fig.6-16 are
estimated to be good to about 4.5kHz. We can see a distinct change in the
response at about this frequency. The peculiar response at about 2.5kHz. is real.

Finally, these polar maps are all normalized to a level of 0dB on axis. This
brings up an important point that perhaps we should wait to make until we talk
about room acoustics, but we will discuss it here. It is always possible to electron-
ically equalize the response of any loudspeaker system along any horizontal line in
one of these polar maps. We almost always do this along the axial line. It is impor-
tant to realize, however, that it is impossible to electronically correct the entire
polar map. Its simply cannot be done. The implication here is that electronics can
only go so far in the correction of a loudspeaker's problems. The rest is up to the
designer.

Remembering the basics of the transform relationships for the velocity–polar
response, perhaps it would be more logical to design to a polar pattern that does
not change as abruptly with angle as the “step response” polar pattern used

Figure 6-16 -  The polar response map for a waveguide with an abruptly terminated mouth
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above. We will find it convenient to deal with polar response functions of the fol-
lowing form

(6.6.25)
a = the rate at which the polar response falls off with angle

A value of α =1.25 gives a -3dB point at about 30º as shown in Fig.6-17. The
polar response is independent of frequency so a polar map (level versus angle and
frequency) is not required.  

The calculated velocity distribution for this exponential polar response is
shown in Fig.6-18.This curve is created using 20 modes in the summation. The
instability of the inverse calculation can clearly be seen in the 400Hz curve. At
some number of modes all of the curves become this complex. Here we can see
that if the curve is not oscillatory then it will be identical to all the over curves.
This is attractive since there is now no ambiguity about which curve to choose as
our target distribution. The fact that the velocity wraps completely around the
source is still a problem. Otherwise this velocity distribution appears to be realiz-
able at all a frequencies. 

It is interesting to note that the velocity distribution in Fig.6-18 goes well
beyond the 30° point on the sphere, which is in stark contrast to the established
principle of “line of sight” directivity of a spherical source. The wide angular
velocities required to yield a 30º coverage pattern suggests the possibility of using
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Figure 6-17 -  Intended polar patterns – abrupt and exponential
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a much wider waveguide angle to yield an improved narrower angle response, an
option that we will be developing later.

If we terminate the waveguide at the baffle in an abrupt manner we would find
that we would not get a polar response any better than what we saw in Fig.6-16.
This implies that abruptly terminating the velocity profile in the spherical surface
of the source is not something that we would ever want to do. There may be a
better way.

If we flare the waveguide into the baffle by applying a large radius (“large”
being something that we will define in a moment) from the body of the
waveguide into the baffle, instead of an abrupt termination, then we will find that
we can get a polar response much more to our liking. Unfortunately, flaring a
waveguide into the baffle is not a precise thing to describe mathematically. For
our purposes here, we will assume that the flare has the function of tapering the
velocity found at the mouth in a gradual fashion, as shown in Fig.6-19. This plot
has an abscissa that is an angle, but it can also be thought of as the radius out
from the center of the mouth to the outside edge in the hypothetical spherical
surface of the enclosure, i.e. the waveguides mouth.

The predicted polar response map for this new velocity distribution is shown
in Fig.6-20. This response is nearly ideal with nearly constant coverage at 30º
(-6dB points) from about 400Hz and up. 

There are several things to note from the results to this point. First, it is possi-
ble, and reasonable, to do a waveguide design backwards by specifying the desired
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Figure 6-18 -  The source velocity magnitude for a smooth polar pattern
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Figure 6-19 -  Velocity distribution for flared waveguide

Figure 6-20 -  Polar map for a flared waveguide
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polar response pattern, calculating the required mouth velocity; back propagating
this contour through the waveguide to find the required throat velocity, and
finally designing a phase plug that achieves this required throat velocity. Second,
for constant directivity we do not want a wavefront with a velocity contour which
is independent of angle (radius), i.e. flat, and finally, that waveguides should
always be flared into the baffle and never left with an abrupt termination since
this secondary diffraction is uncontrolled.

Returning now to the discussion that we started earlier regarding a larger
waveguide angle possibly achieving a better polar response, consider the velocity
profile shown in Fig.6-21. This corresponds to a larger angular coverage (>30°)

with a more gradual falloff of the velocity with angle (radius). The polar map is
shown in Fig.6-22. This polar response is virtually the ideal: -6dB at 30° from
400Hz-10 kHz. While it is not obvious how one would obtain the velocity profile
shown in the figure  it certainly seems possible. For instance one might make a
waveguide which had absorptive boundaries rather than reflective ones.  This
would reduce the velocity profile at the edges relative to the center in a manner
similar to that desired. We could, in fact, analyze this situation by developing wave
functions in the waveguide which had an impedance at the boundary instead of a
zero velocity condition. (Yet another interesting exercise for the reader.)

While complex, the task described above is certainly not impossible. The point
here is that while the response shown in Fig.6-22 may seem unreachable it is theo-
retically possible. Experience has shown that what is possible can be achieved.
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Figure 6-21 -  Optimized velocity profile
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Compare the figures in this section with those in Chap.4 for various uncon-
trolled sources. It is apparent that without some form of waveguide, one is forced
to deal with uncontrollable and undesirable situations in regard to the polar
response. We have clearly shown that this situation does not have to be accepted
as a constraint of the design problem. Waveguides offer a means to control the
directivity yielding almost any polar response that is desired. 

Waveguides do have limitations. Most notably, it is difficult to obtain wide
directivity with good control. We have also not discussed how to obtain non-axi-
symmetric polar patterns. The former problem will be discussed in later chapters
when we talk about arrays and the latter problem is really not so difficult. A study
of the separable coordinate systems highlights the Ellipsoidal (ES) Coordinates as
having an elliptical mouth and these devices would yield a non-axi-symmetric
polar pattern. Using them is really not much different than using the OS, except
that the boundaries are defined by an elliptic equation which is not so widely
know. Not much would likely be gleaned from doing an analysis of these devices
(so we will leave that task to the interested reader), although, as we pointed out in
Chap. 2, the wavefunctions in these coordinates are not known. One final point
here is that the ES Coordinates require an elliptical throat, which of course is easy
to achieve in the phasing plug design. This is one more reason why the phasing
plug design must be part of the waveguide and not the driver.

Figure 6-22 -  A polar pattern with smooth angular variation
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6.7 Diffract ion Horns
It would not be fair to leave this chapter without mentioning the horn design

which has dominated the marketplace for so many years. Diffraction horns are
devices which obtain their control by diffracting the wavefront and then con-
straining it to some confined angle via a sort of conical contour. 

A typical layout of a diffraction horn is shown in Fig.6-23. This drawing
shows a top view and a side view in cross section. The side view is basically the
top view swung through an arc of the desired vertical polar pattern. Many varia-
tions on this construction are possible, but this drawing shows the device in it
simplest embodiment.

From Chap.4 we know that when the radiating surface is small compared to
the wavelength, then the polar response is wide (recall the transform of a Rect

1 4 a lower a upper

1 b upper 3 b lower

Figure 6-23 -   Typical layout of a diffraction horn
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function, which widens as the function narrows.). A diffraction device usually
works on the horizontal and vertical axis as separate designs, thereby allowing for
different patterns in the two directions. The throat is initially an exponential horn
owing to the fact that most compression drivers have exponential sections in their
phasing plugs. It initially expands in only one dimension – usually the dimension
with the narrower pattern, the other dimension remains constant at a value cho-
sen so that it is no wider than a half wavelength at the highest frequency of con-
trol. 

At some point this initial horn is terminated. The exact location, distance from
the diaphragm, is not critical and is usually chosen as a compromise for conve-
nient forming of the horn and to set the desired distance that we will discuss
below. The diffraction slot is usually an abrupt slope discontinuity although it can
also be rounded – which tends to smooth out response ripples caused by the dif-
fraction and reflection at this junction. After the diffraction, slot the device flares
in both dimensions and is usually straight sided at this point (although some cur-
vature is often found to be useful.) The angles of the sides are set to the desired
coverage pattern, where the line-of-sight rule-of-thumb is the design concept.
The diffraction slot can be either curved (as shown) or flat depending on the
design. This aspect makes little difference except that the reflected wave, which
we will talk about later, is not as coherent in the flat slot as it would be in the
curved one. This tends to spread the reflection ripples slightly.

The value of kaupper = π  basically sets the upper limit of horizontal control
while kalower will set the lower limit of this control. The same is true for the hori-
zontal dimension where kbupper controls the highest frequency and kblower the
lower frequency. It should be apparent that the design does not allow for inde-
pendent control over all of these variables. It is this latter factor and the need to
compromise that leads to the wide variations seen for this design.

The throat of a compression driver is usually round (although a rectangular
phasing plug would allow for a greater flexibility in the design compromise) and
so the initial section usually transitions from round to square in some manner.
The final horn contours are usually flared to a certain extent because this has
been found to be advantageous. Flaring into the baffle is also seen and not seen
depending on the designer.

The problem with a diffraction horn is the large amount of energy reflected
from the diffraction slot. There is (must be) a large impedance mismatch at this
slot in order for the device to work, i.e. in order for there to be sufficient diffrac-
tion to work with. This impedance mismatch will reflect a great deal of the inci-
dent wavefront back down the device. A standing wave results, which is evident in
both the electrical impedance of the driver as well as the frequency response of
the system.

A second problem with the diffraction device is the ambiguity of its acoustic
center. That is because there are actually two. One is at the throat of the device
and the other at the diffraction slot. The plane in which the sound wave has been
diffracted will have the diffraction slot as its acoustic center and the other plane
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will have the acoustic center at the throat. At angles not in one of these planes the
acoustic center is ambiguous. This causes problems with arraying these devices,
because, as we shall see, the location of the acoustic center is the crucial point in
array performance.

While diffraction horns have served the market well, they are now basically
obsolete. The wavefronts in these devices are complex and can only be analyzed
with complex numerical codes like FEA. At their best, their performance can be
as good as a well designed waveguide and at their worst, they can be a disaster.
This, of course, is only our opinion, but we hope that the reader will recognize
that the results shown in this chapter support such an opinion.

6.8 Summary
A long and complex chapter the subject matter presented here is none the less

of crucial importance to the design of loudspeaker systems. We showed that we
must seriously question the use of the Horn Equation for waveguide design as it
is inapplicable. However, the fact remains that some horns designed from this
equation have worked well. From our results, we can see that the diffraction that
occurs in an exponential horn (for example) could yield exactly the right mouth
wavefront, but if it did it would be purely a coincidence! There is no way that one
could design such a successes from horn theory.

We have attempted to point out that controlling the polar response of the sys-
tem is possible, albeit not easy. We will see in later chapters that directivity
becomes a major component in the design of loudspeaker systems once one
includes the room effects in this design. This is true for both the large and small
venues, but for different reasons. In either case, it just does not seem reasonable
to accept as fact that loudspeaker systems have to have directivity properties
which are uncontrolled, or omni-directional. (Omni-directional being, in our
opinion, not really controlled, but simply the acceptance of the notion that noth-
ing else is possible.)

It is true that the recent trend towards smaller and smaller loudspeakers does
not allow for directivity control to any appreciable degree. Directivity control
below the frequency where the dimensions of the enclosure become comparable
to the wavelength of the sound cannot be accomplished without substantial
amounts of signal processing and multiple drivers – an expensive proposition and
not one that we are likely to see with wide availability in the near future. While the
idea that enclosures need to be large for good low frequency response is certainly
true, we can see that there is now another reason for larger enclosures – the ability
to control the directivity/power response of the loudspeaker system. The authors
hope that good sound quality demands will prevail and that we will see a return to
the “substantial” sized loudspeakers of the past in the modern applications of
home theatre and other applications where sound quality is a primary consider-
ation.


